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Over the last four chapters you have been look-
ing at ways of seeing patterns in verbal data. In 
particular, you have been asking how the dis-
tribution of data into coding categories varied 
across contrast and across dimension. In some 
cases, you may have found small variations; in 
some cases, large variations. In this chapter, we 
turn to considering the issue of evaluating the 
significance of those variations.

Significance and Surprise
Generally speaking, we call something “significant” if it is important, if it has 
a bearing on what we will do. But statistical significance is better thought of as 
surprising rather than important. If something surprises us that means it seems 
outside of our expectations. It’s unusual. As this definition suggests, evaluating 
statistical significance involves making a comparison between what we have 
observed and what we would usually expect to observe if nothing much was 
going on.
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The comparison of observations and expectations guides our evaluation 
of significance in all kinds of everyday activities. We judge, for example, the 
significance of Jenna’s not returning our morning greeting against our expec-
tations for what Jenna would do if nothing much were going on. If our model 
of expectations is that she always returns our greeting, her failing to do so this 
morning can seem highly significant. If, however, she is often lost in thought 
on days when she has a lot of work to do, her failure to return our greeting will 
be seen as far less significant.

Figure 9.1: A normal distribution.7

For many of us, the most familiar tests of statistical significance involve 
comparing what was actually observed to expectations represented in a nor-
mal curve like that shown in Figure 9.1. With a normal curve, just by know-
ing the values of two parameters, the mean (or the average) and the standard 
deviation, you can draw the curve. The standard deviation is a measure of the 
degree to which the data is spread out around the mean. It is calculated by 
subtracting the mean from each data point, squaring the results (to make sure 
that none of them are negative numbers), taking their average, and then taking 
the square root of the result (to reverse the effects of the earlier squaring).

7 Graphic by M. W. Toews and used under the Creative Commons Attribution 
license 2.5 Generic (retrieved from https://commons.wikimedia.org/wiki/File:Stan-
dard_deviation_diagram.svg)

https://commons.wikimedia.org/wiki/User:Mwtoews
https://commons.wikimedia.org/wiki/File:Standard_deviation_diagram.svg
https://commons.wikimedia.org/wiki/File:Standard_deviation_diagram.svg
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Statistics that use a normal curve shape our expectations about our ob-
servations using this mean and standard deviation. Graphically, one standard 
deviation is located at the graph’s inflection points, where the slope changes 
from curving down to curving up. With a normal curve, we expect most of our 
observations to cluster symmetrically around the center or average, with fully 
34.1% of the data lying evenly on either side of this mean. Within the further 
boundaries of two standard deviations from the mean we expect to find 95% 
of our observations. And we expect almost all of our observations (99.7%) to 
lie within the further boundaries of three standard deviations.

In many statistical methods, we imagine drawing a number of random 
samples from the expected model—100 samples, 1,000 samples, even 10,000 
samples—and ask, how often would one of them look like what I’ve observed? 
In terms of Jenna’s greetings—and assuming we had perfect memory—we 
might examine her morning behavior over the last three years when we know 
everything was OK between us and ask, how many times did she not return 
our greeting? If it just one time in 1,000, we might say the chances that this 
morning’s behavior was expected was one in 1,000 or, written in statistical 
language, p < .01.

The assumption that an appropriate underlying model of expected distri-
bution follows a symmetrical normal curve works very well for some phenom-
ena. The number of times a coin turns up heads in a set of tosses, for example, 
follows a normal distribution, assuming the coin is not dinged up in a way that 
favors one side or the other. Many phenomena are not normally distributed 
however. If we ask about the distribution of household income in a country, 
for example, we often find that a few individuals have a net worth far greater 
than the average household. These high-income households, when averaged 
in with everyone else positively skew the mean household income as shown in 
Figure 9.2, not a normal curve.

Many researchers evaluate significance without understanding that they 
are implicitly making a choice about how to model their underlying expecta-
tions for the data. If the assumption of normalcy is inappropriate, such tests 
will tell you little about how you should evaluate the outcome of your analysis. 
It would be as if you had taken Jenna’s behavior and inappropriately compared 
it to your model of expectations for Ralph: Ralph always returns my greeting, 
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we might think, so Jenna’s silence must be highly significant. As this example 
is meant to indicate, using the wrong model of underlying expectations can 
warp your evaluation of significance.

Figure 9.2: A skewed distribution.8

Exercise 9.1 Test Your Understanding
Decide whether you would expect the following distributions to be normal if 
nothing much were going on. Think about where the average might be, and then 
consider whether you would expect values above and below that average to be 
evenly distributed and increasingly less common the further from the average.
 • The number of times heads arise in 150 coin tosses.
 • The length of essays written in a timed writing assessment.
 • The number of students who pass and who fail as the result of a writing as-

sessment.
 • The number of times a computer user checks email in an average day.
 • The number of personal and work-related emails a computer user receives.

For Discussion: What aspects of the data seem to be important to consider in 
choosing a significance test?

8 Graphic by Rodolfo Hermans and used under the Creative Commons Attri-
bution-Share Alike 3.0 Unported license. Retrieved from https://commons.wikime-
dia.org/wiki/File:Negative_and_positive_skew_diagrams_(English).svg.

https://commons.wikimedia.org/wiki/User:Mwtoews
https://en.wikipedia.org/wiki/en:Creative_Commons
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://commons.wikimedia.org/wiki/File:Negative_and_positive_skew_diagrams_(English).svg
https://commons.wikimedia.org/wiki/File:Negative_and_positive_skew_diagrams_(English).svg
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Significance Tests for 
Coded Verbal Data

For the kind of analyses we have been discussing in this book—the analysis 
of verbal data gathered from a number of different cases (different speakers, 
different classrooms, different disciplines)—the normal curve is inappropriate 
as a model of underlying expectations. Verbal data coded into categories—cat-
egorical data—can never expected to approach a normal distribution because 
a normal distribution is continuous while categorical data is, well, categorical.

Figure 9.3: Expected distribution of categorical data with a 4-code coding scheme.

To see the difference, imagine a data set that has values up to 4. If this data 
were continuous, the values might include .01, 3.3, 1.2, 1.27, and so on. But if the 
data were categorical with only four categories, the values would always be 1, 2, 
3, or 4. To see the difference, imagine we put a set of four buckets on the floor 
and randomly toss coins into them. Each toss is going to go into the 1 bucket, 
the 2 bucket, the 3 bucket, or the 4 bucket. And if our toss was truly random, 
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after a while the buckets would have about the same number of coins in them 
with the kind of flat distribution shown in Figure 9.3. Indeed, if one bucket had 
more or fewer coins than expected, we might suspect that our tosses had not 
been truly random.

When evaluating the significance of a pattern of coded verbal data, the 
underlying model of distribution is usually the kind of flat distribution shown 
in Figure 9.3 where the probability of each category is equal to every other cat-
egory. The most frequently used significance test for coded verbal data is the χ2 

test. χ2 is pronounced chi-square. A second and less commonly used test is the 
multinomial logistic regression with a case effect. Both tests are designed to 
work with categorical data and both can tell us something about the extent to 
which the patterns in coded data are surprising. In the rest of this section, we 
explain how each of these tests work. Then, in the second half of this chapter, 
we introduce procedures for using them.

How the χ2 test works
The χ2 test measures the level of association among the categories of a fre-
quency table like the one shown in Figure 9.4. An association occurs when 
the values along one of the dimensions generally co-occur with certain values 
along the other dimension. In Figure 9.4, an association would mean that one 
or more of the categories in the Frame dimension (Identity, Object, Practice) 
would co-occur with one or more of the categories of the Alignment dimen-
sion (Professional, Social, Technical). That is, they would occur more or less 
than we would expect. They would be surprising.

Figure 9.4: Sample frequency table showing the distribution of Frame 
(Identity, Object, Practice) by Alignment (Professional, Social, Technical).
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 Whether the distribution of the data in Figure 9.4 is surprising is what a 
χ2 test is designed to tell us. It does so by comparing the actual distribution of 
coded data like what we see in Figure 9.4 with a model of the expected distri-
bution if nothing much was going on, like the one shown in Figure 9.5.

Let’s examine the model in Figure 9.5 in more detail. First, you may have 
noticed that its marginal sums are the same as we saw in the actual data. This 
is no coincidence. The χ2 model works by saying, “if we keep the totals in each 
row and column the same, what would we expect the distribution in the cells 
to be by random chance?” For instance, overall, Identity occurs about 18% of 
the time in the actual data, Object about 36%, and Practice about 47%, all add-
ing up to 210 or 100%. For any other row in the table in Figure 9.5, these per-
centages remain true throughout. That is, in every row, about 18% of the data 
are Identity, 36% Object, and 47% Practice.

Figure 9.5: Expected distribution of the data shown in Figure 9.4.

Another way to understand expected model is to see it in terms of a visual-
ization like the block chart on the bottom in Figure 9.6, where all three planes 
of the chart have the same shape. Moving from the front with Professional to the 
back with Technical, values increase from the left. Everything is proportional.

Compare this with a block chart for the actual data, shown at the top of 
Figure 9.6. The front plane, the data with Professional alignment, shows a shal-
low U curve. The second plane, the data with Social alignment, is also shaped 
like a U, although a little less shallow. And the back plane, the data with Techni-
cal alignment, the curve slopes sharply to the right. None of these shapes looks 
particularly similar to each other.
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Figure 9.6: Visual representations of the actual (top) and 
expected (bottom) distributions from Figures 9.3 and 9.4.
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The χ2 test works by comparing these two distributions, one for the actual 
data and the other for the expected data using the following formula:

Translated into English, this formula means that χ2 equals the sum of the 
squares of the differences between the observed and expected values for each 
cell in your frequency table, each difference having been divided by the ex-
pected value for that cell. The greater the sum of differences between two, the 
more surprising or statistically significant the result is. This decision-making 
rule parallels our example with Jenna’s morning greeting: the more that her 
behavior on a given day doesn’t fit with our understanding of her usual behav-
ior, the more we find her behavior surprising or significant.

How Multinomial Logistic Regression Works

Multinomial logistic regression works in nearly the opposite way from the χ2 
test. Whereas surprise and significance for the χ2 test lies in the lack of fit be-
tween the actual distribution and the model, for multinomial logistic regres-
sion, as we shall see, surprise and significance lies in an increasing fit.

Furthermore, unlike the model used in a χ2 test, which uses the categorical 
sums in a frequency table, a multinomial logistic regression uses all of the data 
points, not just their sums. As shown in Figure 9.7, for example, the model 
created by a multinomial logistic regression tries to predict what the coding 
for Alignment would be, given a coding for Frame.

In this way, rather than looking for an association among dimensions as 
the χ2 test does, multinomial logistic regression seeks to determine the predic-
tive power of one factor—such as the dimension of Frame—for a dimension—
such as Alignment. The first of these is often called the predictor variable and 
the second the outcome variable.
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 Figure 9.7: Data points as modeled by a multinomial logistic regression.

In the verbal data coding dealt with in this book, predictor variables are 
usually one of two types. The first, as we illustrate with Figure 9.7, is a value 
on a first coding dimension and would answer the question: given this value, 
what do we predict would be the value on a second dimension?

The second possibility for a predictor variable is the contrast we have built 
into our data collection. In the data shown in Figure 9.7, for example, the data 
have been labeled by the year in which the content was produced. With this 
data, we could seek to answer the question: given that a piece of data was pro-
duced in Year1, what do we predict would be its alignment? With a well-fitted 
regression model, we should be able to predict with better than chance accu-
racy the answers to questions like these. The ability to make such a prediction 
would be surprising—and significant.

Like all regressions, multinomial logistic regression works by fitting lines 
to actual data. In a simple linear regression like that shown in Figure 9.8, a 
straight line is drawn to minimize the distance between the actual data points 
shown in blue and the line shown in red. A multinomial logistic regression fits 
a more complicated line like that shown in Figure 9.9. In this logistic curve, 
the values are limited to a range between 0 and 1, making it a good model for 
categorical data.
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Figure 9.8: Fitting a line in simple linear regression.9 

Figure 9.9: A logistic curve used by a multinomial logistic regression.10

9 Graphic by Sewaqu and released into the public domain (retrieved from 
https://commons.wikimedia.org/wiki/File:Linear_regression.svg).

10 Graphic by Qef and released into the public domain Retrieved from https://
commons.wikimedia.org/wiki/File:Logistic-curve.svg

https://commons.wikimedia.org/w/index.php?title=User:Sewaqu&action=edit&redlink=1
https://commons.wikimedia.org/wiki/File:Linear_regression.svg
https://commons.wikimedia.org/wiki/File:Logistic-curve.svg
https://commons.wikimedia.org/wiki/File:Logistic-curve.svg
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As we saw earlier, a χ2 test works by using probabilities. Probabilities in 
verbal data analysis can be defined as the frequency of segments in a given 
category divided by the total number of segments in all categories. So, as il-
lustrated on the right in Figure 9.10, if we have a three-category scheme with 
equal probabilities applied to nine pieces of data, the probability of the cate-
gory Social is 3 divided by 9 or .33. Probabilities like these are key in a χ2 test 
where they are used to model the expected values.

With multinomial logistic regression, the key is the slightly different con-
cept of odds. Odds compare the probability of a category being used to the 
probability of it not being used. In verbal data, odds can be defined as the fre-
quency of segments in a given category divided by the frequency of segments 
in all other categories. As illustrated on the left in Figure 9.10, the odds of the 
category Social are 3 divided by 6 or .5. In gambling contexts, this can be ex-
pressed as an odds of 2 to 1 against being coded as Social.

Figure 9.10: The difference between probability and 
odds. Modeled after Doliner (2014).

A multinomial logistic regression makes a comparison between two mod-
els, a baseline model without the value of interest and a model with the value 
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of interest added. Thus, it begins by choosing a baseline category from a cat-
egorization scheme. It doesn’t matter which category is chosen as the base-
line, but the app developed for this book generally chooses the first category 
it encounters in the worksheet. So for coding the data shown in Figure 9.7, the 
baseline would be the category Professional as it is the first coding category 
used for Alignment.

Next, the multinomial logistic regression makes a series of comparisons 
between the odds of each of the other categories in the categorization scheme 
and the odds of this baseline. To do so, it computes the log odds as the com-
parison.11 So with our data, for example, it computes the log odds of being 
coded as Social compared to being coded as Professional. Then it will compute 
the odds of being coded as Technical compared to being coded as Professional. 
If the additional information provided by the model with the added category 
provides a better fit than the baseline model, then we find the category to be 
significant predictor.

Note here that, as we said earlier, significant doesn’t mean important. A 
variable might be significant in improving a fit between the line and the data by 
making a relatively small but stable improvement. In other words, our chance 
of being correct might be better than chance with this additional information, 
but it might still be relatively poor. So with this and all significance testing 
judging whether a significant result is an important result requires assessing 
the patterns you discovered using the techniques outlined in chapters 6 and 7.

Assessing Your Data
As we have just seen, all significance testing builds one or more models against 
which to evaluate the distribution of our actual data. To better understand 
which significance test (if any) to use with a given data set, we need to review 
the structure of our data set and then check to see whether and how it is appro-
priate for the significance testing we describe in this chapter.

11  Log odds are the natural logarithm of the odds ratio between the category 
of interest and the baseline category. If you remember from high school what a loga-
rithm is, that’s fine, but otherwise, don’t worry about it.
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Data Points
We begin by counting the total number of data points in our data set. We can 
count up the number of data points or, if we have built a frequency table, we 
can find the total in the bottom right-hand of the marginals. In the frequency 
table in Figure 9.4, for example, the total number of data points is 210. Most 
statistical tests are more accurate with more data points. If you have just a few 
data points, you may not be able to evaluate significance.

Independent Cases
Next, we count the number of independent cases in our data set. If you have 
followed earlier chapters, you may have put each independent case—each in-
terview, each text, etc.—in a separate worksheet or a separate document, even 
though you may now have combined them to do statistical analysis. For our 
combined data, as shown in Figure 9.7, the cases come from different users 
like irunepan. In fact, our data set includes verbal data from 11 such users, or 
11 cases. Some statistical tests are designed to take into account the way that a 
data set is structured by cases.

Keep in mind that cases should be more or less independent from one an-
other. In our example, independence means that what irunepan says is not in-
fluenced in any direct way by what another user says. If speakers are in the same 
conversation, their contributions are likely to be influenced by one another and 
probably should not be considered separate cases. But if their contributions 
are from separate interviews, then they could be considered independent. In 
your data, you may find that you have multiple independent cases, or, if you are 
studying one focus group, for example, you may only have one case.

Built-In Contrast
We may have one or more built-in contrasts in the design of our data set. A 
built-in contrast in a data set means that we have deliberately sampled our data 
from different areas in the universe of our phenomenon. Perhaps we gathered 
transcriptions of both Design and Managerial meetings. Perhaps we have essays 
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from students who did above and below average in their composition course. 
Perhaps we have scraped web texts from political discussions and from discus-
sions about gardening. In any of these cases, we have a built-in contrast that 
needs to be taken into account in choosing a statistical test. In our sample data, 
we have data from four years so we could use Year as a possible built-in contrast.

Coding Dimensions
Much of the data we analyze has only one coding dimension. That is, we have 
used only one coding scheme with our data set. But, as we see in Figure 9.7, it is 
not uncommon to use two different dimensions such as Frame and Alignment. 
Knowing how many dimensions we have is important to deciding which kind 
of significance testing to use.

Choosing Your Significance Test(s)

Some Preliminaries
The analytic techniques introduced in this book are primarily focused on pro-
ducing a descriptive analysis of verbal data. That is, they are designed to describe 
the data set you have collected. Some researches want to take their analysis an 
additional step to produce an analysis that is inferential. An inferential analysis 
uses a description of a data set to make inferences about the larger population 
from which the data set was taken. In our description of Design and Managerial 
meetings, we have focused largely on trying to describe what was going on in 
those meetings in terms of speaker participation; this is a descriptive purpose.

If we wanted to draw inferences about other meetings, we would need to 
consider the kind of sample we had drawn from the larger population of possi-
ble meetings. In general, inferences are only valid if the sample is drawn using 
random sampling, a sampling method we reviewed in Chapter 2. So if we want-
ed to make inferences about other Managerial and Design meetings, we would 
have had to collect and analyze a random sample of such meetings. In many 
cases with verbal data, such random sampling is neither possible nor desirable.
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All statistical methods do require, however, that you have enough data. If 
your frequency table is sparse, the statistics will yield results that are not to be 
trusted. In general, a sparse frequency table is one where:

• One or more of the cells is empty.
• More than about 20% of the cells have values less than 5.

A sparse frequency table indicates that you have one or more coding cat-
egories that were not often used in coding your data. If this is the case, you 
may be able to combine infrequent categories into some more general cate-
gory—combining some less interesting categories into a larger Miscellaneous 
category for example—but make sure that you maintain the categories that 
motivated your study in the first place.

If combining coding categories will not be possible, then you simply may 
not have enough data to use significance testing. Going back to our analo-
gy with morning greetings, you may not have encountered Jenna on enough 
mornings to enable you to say whether her failure to greet you this morning is 
surprising. This doesn’t mean that you cannot describe what you have seen her 
do, only that you cannot say if it is surprising.

Choosing Your Test
The decision about which test you use to evaluate significance depends on 
the structure of your data, as shown in Figure 9.11. Usually, we recommend 
that you always run some kind of χ2 test first. As we shall see, such a test tells 
you a great deal more about your data than just its significance.

In many cases, we also recommend that you go on to run a multinomial 
logistic regression and compare the results. As we discussed earlier, a mul-
tinomial logistic regression is an inferential test that will tell you something 
about your chances of predicting a value on a second, or outcome variable, 
given a value on a first, or predictor variable. This is not something that a χ2 
test can do.

But there is a further and perhaps more important reason to run a mul-
tinomial logistic regression in addition to a χ2 test. The χ2 test assumes that 
each data point in your frequency table is independent. This is an assumption 
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that is often violated with verbal data. If your data segments combine to 
make up continuous discourse, they are not going to be independent from 
one another. Furthermore, if two segments come from texts that are written 
by the same author, they may well not be independent. Even when segments 
come from essays written by students enrolled in the same writing course, 
they might not be independent.

Figure 9.11: A decision tree for choosing significance test(s) for coded verbal data.

As these example are meant to indicate, it can be difficult to tell in advance 
whether a data set violates the requirement of independence. Sometimes the 
only way to tell is to run the χ2 test. If the results suggest you need to get a 
more valid measure of significance, go on to multinomial logistic regression. 
Multinomial logistic regression can take into account the interdependency 
among the data points within each case, factor it out, and establish whether 
the remaining variation is still surprising, still significant. 

Multinomial logistic regression works best when there are a lot of data 
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points within each case. If there are few data points or something else inappro-
priate about the model, the regression may produce unstable results. To make 
sure that your multinomial logistic regression is producing stable results, we 
suggest you run a multinomial logistic regression at least twice. If the signifi-
cance results are the same, then you can feel confident in them. If the results 
remain unstable, you may have too few data points for significance testing. If 
nevertheless you believe that you have enough data, we recommend that you 
consult with a statistician.

Exercise 9.2 Test Your Understanding
Use the decision tree in Figure 9.11 to make a plan for evaluating the significance 
of the following data sets.
1. You have gathered and coded essays from six classes, three of which were 

taught using the usual curriculum and three of which were taught with a new 
curriculum. Your coding scheme was for Engagement.

2. You have examined published journal articles from biology, physics, and med-
icine all dealing with the same phenomenon. You have coded the citations for 
Function and for Source.

3. You have coded a set of published articles for Genre.
4. You are trying to understand the patterns of interaction among students and 

their teachers in your program. You have coded classroom transcripts for 
Speaker and Contribution.

For Discussion: What is the impact on evaluating significance of adding a second 
dimension to your coding? What is the impact of including a built-in contrast?

Additional Notes on Procedures 
for Significance Testing

Some additional notes on our procedures for the statistical analyses. First, all 
of the procedures for χ2 analysis start with the assumption that you have cre-
ated a frequency table for your data using methods introduced in Chapter 6. 
If you don’t yet have a frequency table, you may want to turn to this chapter.
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Second, we have provided procedures for doing all of the statistical anal-
ysis using both online apps and, for the χ2 analysis, using Excel. We have 
not provided any procedures using MAXQDA because the standard package 
does not support significance testing.

Third, multinomial logistic regression with a case effect is a relatively 
recent development in statistical methods and its application can be tricky. 
The online app for conducting a multinomial logistic regression we direct 
you to has been developed for us by Dr. Emily Griffith of North Carolina 
State University. We are grateful to Dr. Griffith for this contribution to the 
analysis of coded verbal data.

Memo 9.1: Plan for Significance Testing
Record your assessment of your dataset, its size, contrast, cases, and coding di-
mensions. What significance test(s) do you plan to use and why?

The χ2 Test of Goodness of Fit
Although we have emphasized the value of using a built-in contrast to code 
your data, you may find that you want to look at a set of data that has been 
coded along one dimension without contrast to ask the question:

How likely is it that my segments have been coded randomly?
Answering such a question can assure you—and your readers—that the coders 
were coding by something more than chance.

Calculating the χ2 Test of Goodness of Fit
The six steps shown in Figure 9.12 and discussed in Excel Procedure 9.1 will take 
you through the χ2 test for goodness of fit. You can download a template for 
your calculations at https://wac.colostate.edu/books/practice/codingstreams/. 
Directions for an app to do this calculation are provided in Procedure 9.1.

https://wac.colostate.edu/books/practice/codingstreams/
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Figure 9.12: The six-step calculation of the goodness-of-fit χ2 test.

Interpreting the Results of the χ2 
Test of Goodness of Fit

The final step in the computation of the Goodness of Fit χ2 test—looking up 
the values on the table—tells you what the chances are that the distribution of 
your data over categories is surprising. Generally speaking, we think of any 
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probability of less than .01 as significant, less than .001 as highly significant, and 
less than .05 as somewhat significant. See Excel Procedure 9.1 and Procedure 9.1.

Such numbers do not tell you how your observed data is departing from 
the expected model in such a fashion as to lead to a significant outcome for 
the χ2 test. For this, we need to compare the observed values with the expected 
distribution. Then we will be able to see that some observed values lay closer 
to their expected counterparts and some are more distant. The greater the dif-
ference between the pairs, the more they contribute to a large sum of χ2 value.

Thus, interpreting a significant χ2 result involves pinpointing the greatest 
differences in the values making up the χ2 value. To see these, you must return 
to examine the table in Step 4 where you computed (O-E)2/E for each cell. 
Since these are the numbers that you added up to get the final sum of χ2, ex-
tremely high values tell you what is so unexpected in the distribution of your 
data. In Step 4 in Figure 9.12, for example, we see that almost all of the value for 
the significant sum of χ2 comes from the values for Identity (15.56) and Practice 
(11.20). The value for Object is nearly zero (.36).

Having pinpointed the cells that make the greatest contribution to your 
significant χ2 value, you next try to understand what makes the observed val-
ues in these cells so different from the expected values. You can do this by 
looking at differences between the observed and expected values, comparing 
Steps 1 and 2. For example, looking at the tables in Figure 9.12, we see that the 
observed value for Identity is much lower than expected and the observed val-
ue for Practice is much higher than expected. This means that our coders have 
been using the code Identity much less than we would have expected had they 
been coding by chance, and they are using the code Practice much more than 
we would have expected by chance.
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 Excel Procedure 9.1: Calculating a Goodness of Fit χ2 Test in Excel

https://goo.gl/Hx5Ay7

1. Create a frequency table holding the categories of your coding scheme, as shown in Step 1 of Figure 
9.12. Make sure to include the marginal sums.

2. Create 3 more tables in the same way. Label them as shown in Figure 9.12. You may also use the Excel 
template at https://wac.colostate.edu/books/practice/codingstreams/ that will automatically do the 
calculations for steps 3-5.

3. For Step 2, Expected, divide the total number of segments by the number of categories and put the 
result in each cell of this table.

4. For Step 3, O-E, subtract the expected frequencies from the observed values and put the result in each 
of the cells.

In Figure 9.12, we used a formula like the following to accomplish this calculation in each cell:

=B18-B22

5. In Step 4, (O-E)2/E, for each cell, square the value from Step 3 and divide the result by the expected 
value from Step 2.

In Figure 9.12, we used a formula like the following to accomplish this calculation in each cell:

=(B26*B26)/B22

The sum of χ2 will be the grand total in the table.

6. Calculate the degrees of freedom by subtracting 1 from the number of categories in your coding 
scheme.

7. Use a chi-square calculator like the one at https://www.socscistatistics.com/pvalues/chidistribution.
aspx to calculate the p-value for your sum of chi-squares with your degrees of freedom.

https://goo.gl/Hx5Ay7 
https://wac.colostate.edu/books/practice/codingstreams/
https://www.socscistatistics.com/pvalues/chidistribution.aspx 
https://www.socscistatistics.com/pvalues/chidistribution.aspx 
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 Procedure 9.1: Calculating a Goodness of Fit χ2 Test with an Online 
App

https://goo.gl/Hx5Ay7 

1. Create a frequency table 
holding the categories 
of your coding scheme. 
Make sure to include the 
marginal sums.

2. Create a table in the 
same way to hold your 
expected values. To 
calculate your expected 
values, divide the total 
number of segments by 
the number of catego-
ries.

3. Go to the online app at 
http://vassarstats.net/cs-
fit.HTML  and enter the 
data for the observed 
and expected values as 
showin in Figure 9.13.

4. Click Calculate.
5. The app will return the 

degrees of freedom, the 
sum of χ2 and the prob-
ability value as shown in 
Figure 9.14.

Figure 9.13: Calculating the goodness-of-fit χ2 test online.

Figure 9.14: Results of the online calculation for the goodness-of-fit χ2 test 
(http://vassarstats.net/csfit.HTML).

https://goo.gl/Hx5Ay7
http://vassarstats.net/csfit.html
http://vassarstats.net/csfit.html
http://vassarstats.net/csfit.html
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Overall then, the Goodness of Fit χ2 test can give us a way to see the coding 
preferences that our coders used in coding the data. Unfortunately, the results 
of our example χ2 test cannot take us much further than this because the sum 
of χ2 appears inflated. This suggests that the test has not given us a valid mea-
sure of significance. As discussed earlier, inflated sums of χ2 can result from a 
lack of independence among the data segments.

So while the χ2 test gives us a way of seeing what is going on in our coders’ 
use of the coding categories, if you find a lack of independence, the results 
cannot be relied on as a measure of significance. If the sum of χ2 appears in-
flated, you should not infer anything about the coding patterns of the larger 
population from which your data set was drawn. In reporting an analysis 
that yields inflated sums of χ2, then, you can point out to readers what the 
distribution of coding preferences was, but you should not report the results 
of the χ2 test.

The χ2 Test of Homogeneity
The χ2 test of homogeneity works with data coded along one dimension which 
has a built-in contrast. It is a way of answering the question:

 How likely is it that two or more groups in my study share the same 
distribution across the categories in my coding scheme?

Answering such a question can help you to evaluate the significance of differ-
ences across your built-in contrast. Such a test is often called a test of homoge-
neity because we are asking whether the distribution in one sample of data is 
similar to—or homogeneous with—the distribution in another sample.

Computing a χ2 test of homogeneity
The six steps shown in Figure 9.16 and discussed in Excel Procedure 9.2 will 
take you through the χ2 test. You can download a template for your calcula-
tions at https://wac.colostate.edu/books/practice/codingstreams/. Directions 
for an app to do this calculation are provided in Procedure 9.2.

https://wac.colostate.edu/books/practice/codingstreams/
https://wac.colostate.edu/books/practice/codingstreams/
https://wac.colostate.edu/books/practices/codingstreams
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 Excel Procedure 9.2: Calculating a χ2 Test of Homogeneity in Excel

https://goo.gl/Hx5Ay7

1. Create a frequency table 
holding the categories of your 
coding scheme and the values 
of your contrast as shown in 
Step 1 of Figure 9.15. Make sure 
to include the marginal sums.

2. Create 3 more tables in the 
same way. Label them as shown 
in Figure 9.16. You may also use 
the Excel template available 
at https://wac.colostate.edu/
books/practice/codingstreams/ 
that will automatically do the 
calculations for steps 3-5.

In Figure 9.15, we used the following 
formula to accomplish this calcula-
tion in each cell:

=($E15*B$19)/$E$19

3. For Step 3, O-E, subtract the 
expected frequencies from the 
observed values and put the 
result in each of the cells.

Figure 9.15: Calculating χ2 of homogeneity.

Continued . . . 

https://goo.gl/Hx5Ay7 
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 Excel Procedure 9.2: Calculating a χ2 Test of Homogeneity in Excel 
(continued)

https://goo.gl/Hx5Ay7

In Figure 9.15, we used a formula like the following to accomplish this calculation in each cell:

=($E15*B$19)/$E$19

4. For Step 3, O-E, subtract the expected frequencies from the observed values and put the result in each 
of the cells.

In Figure 9.15, we used a formula like the following to accomplish this calculation in each cell:

=B15-B22

5. In Step 4, (O-E)2/E, for each cell, square the value from Step 3 and divide the result by the expected 
value from Step 2.

In Figure 9.15, we used a formula like the following to accomplish this calculation in each cell:

=(B29*B29)/B22

The sum of χ2 will be the grand total for the table.

6. Calculate the degrees of freedom by subtracting 1 from the number of rows in your contrast and 1 
from the number categories in your coding scheme. Multiple these 2 numbers together

For Figure 9.15, we multipled together (4-1) and (3-1) to get degrees of freedom equal to 6.

7. Use a chi-square calculator like the one at https://www.socscistatistics.com/pvalues/chidistribution.
aspx to calculate the p-value for your sum of chi-squares with your degrees of freedom.

https://goo.gl/Hx5Ay7
https://www.socscistatistics.com/pvalues/chidistribution.aspx
https://www.socscistatistics.com/pvalues/chidistribution.aspx
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 Procedure 9.2: Calculating a χ2 Test of Homogeneity with an Online App

https://goo.gl/Hx5Ay7

1. Go to the online app at http://turn-
er.faculty.swau.edu/mathematics/
math241/materials/contablecalc/ and 
enter  the number of rows and col-
umns in the opening page of the app. 
Press Continue.

2. Enter a title, labels and data for your 
frequency table as shown in Figure 
9.16. Leave the option to display 
individual χ2 values checked and press 
Compute.

The app will return a frequency table in 
which each cell holds the observed value, 
followed by the expected value (in italics), 
and the individual 2 values as shown in 
Figure 9.17. The sum of χ2, the degrees of 
freedom, and the probability value can be 
found below the table.

Figure 9.16: Entering data for the online app for the χ2 test 
of homogeneity.

Figure 9.17: Results of the calculations for the online app 
for the χ2 test of homogeneity (http://turner.faculty.swau.
edu/mathematics/math241/materials/contablecalc/).

https://goo.gl/Hx5Ay7
http://turner.faculty.swau.edu/mathematics/math241/materials/contablecalc/
http://turner.faculty.swau.edu/mathematics/math241/materials/contablecalc/
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Exercise 9.3 Try It Out

Perform a χ2 test of homogeneity for the data in Figure 9.18 (and available at 
https://wac.colostate.edu/books/practice/codingstreams/).

Figure 9.18: Observed frequency distribution of speakers in meetings 1 and 2.

For Discussion: What do the results tell you about the likelihood that Meetings 1 
and 2 share the same distribution of speakers?

Interpreting the Results of the 
χ2 test of Homogeneity

The final step in the computation of the χ2 test of homogeneity tells you what 
the chances are that the distribution of your data over categories and across 
contrast is surprisingly different or not homogeneous. Interpreting a signifi-
cant χ2 result of p < .05 or p < .01 involves pinpointing the greatest differences 
in the values making up the χ2 value which can be found in the table in Step 
4 of Figure 9.15 or the third row in the cells of Figure 9.17 High values can tell 
you what is so unexpected in the distribution of your data; low values tell you 
what is not surprising.

Our calculations shown in Figure 9.15 suggest that there is nothing surpris-
ing about the way the distribution of data into our coding categories changes 
by year. The total, 11.24 with df equal to 6 show a probably of less that 1 in 10 
(p < .10), a result that well can occur by chance. So the answer to the question 
with which we opened, How likely is it that two or more groups in my study 
share the same distribution across the categories in my coding scheme? ap-
pears to be “pretty likely.”
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Figure 9.19: A block chart of the actual data from Figure 9.16.

A look at the individual χ2 values shown in Step 4 of Figure 9.15 confirms 
that none of the values look surprisingly large. And the block chart of the same 
data shown in Figure 9.19 also shows homogeneity with each year’s data being 
lower for Identity, medium sized for Object and, for the most part, highest 
for Practice. While it is the case that Practice shows up proportionately less in 
Year2, the difference is not large enough to reach significance.

Part of the problem with the data in our example χ2 is that almost all of the 
observed values for Year3 are very small; two are 0 and one is just 2. As men-
tioned earlier, scarce data can compromise the validity of a χ2 analysis. In this 
case, it might be worthwhile to combine the Year3 and Year4 into a category 
like After Year2 which we have done in the analysis shown in Figure 9.20.

The results for the analysis with combined categories yields a sum of χ2 of 10.50. 
This value crosses the threshold for significance of the .05 level with df equal to 4. 
A look at the values in Step 4 pinpoints the After Year2 values for Object and Prac-
tice make the largest contributions. And a comparison of the observed and expect-
ed values in Steps 1 and 2 suggests that surprise is coming from an unexpectedly 
low number of Object codes and an unexpectedly high number of Practice codes.
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Figure 9.20: A χ2 analysis with data combined over scarce categories.

https://wac.colostate.edu/books/practice/codingstreams/
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The fact is, however, that the surprise arises only in the After Year2 category 
for which we have relatively little data. As a consequence, we would be some-
what conservative in making claims about the way that the data changes after 
Year2. At best, these results suggest that we should go on to do a One-Factor 
Multinomial Logistic Regression.

So while the χ2 test of homogeneity gives us a way of seeing what is going 
on across our built-in contrast, scarce data may mean the results cannot be 
relied on as a measure of significance. If you have any cell values of 0 or many 
cell values of less than 5, you should consider combining categories.

In addition, inflated sum of χ2 may affect a χ2 test of homogeneity just as it 
did with the χ2 test for goodness of fit. For this reason, we always recommend 
that you go on to do a One-Factor Multinomial Logistic Regression to confirm 
any significant results from a χ2 analysis.

The χ2 Test of Independence
The χ2 test of independence works with data coded along two dimension with-
out a built-in contrast. It is a way of answering the question, “How likely is it 
that two dimensions in my study are independent of one another?” Answering 
this question can help you to see whether there is a relationship between the 
way your data is coded along one dimension with the way it is coded along a 
second dimension.

Computing a χ2 test of Independence
The six steps shown in Figure 9.21 and discussed in Excel Procedure 9.3 will 
take you through the χ2 test of independence. You can download a template 
for your calculations at https://wac.colostate.edu/books/practice/coding-
streams/. Directions for an app to do this calculation are provided in Proce-
dure 9.3. 

https://goo.gl/Hx5Ay7
https://wac.colostate.edu/books/practice/codingstreams/
https://wac.colostate.edu/books/practice/codingstreams/
https://wac.colostate.edu/books/practice/codingstreams/
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 Excel Procedure 9.3: Calculating a χ2 Test of Independence in Excel

https://goo.gl/Hx5Ay7

1. Create a frequency table 
holding the categories of 
your first and second coding 
schemes shown in Step 1 
of Figure 9.21. Make sure to 
include the marginal sums.

2. Create three more tables in 
the same way. Label them 
as shown in Figure 9.21. 
You may also use the Excel 
template available at https://
wac.colostate.edu/books/
practice/codingstreams/ 
that will automatically do 
the calculations for steps 
3-5.

3. For Step 2, Expected, for 
each cell, multiple the row 
total by its column total and 
then divide the result by the 
table’s grand total.

In Figure 9.21, we used the 
following formula to accomplish 
this calculation in each cell:

=($E19*B$22)/$E$22

4. For Step 3, O-E, subtract the 
expected frequencies from 
the observed values and 
put the result in each of the 
cells.

Figure 9.21: Results of a χ2 test of independence.

Continued . . . 

https://goo.gl/Hx5Ay7
https://www.itl.nist.gov/div898/handbook/eda/section3/eda3674.htm
https://www.itl.nist.gov/div898/handbook/eda/section3/eda3674.htm
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 Excel Procedure 9.3: Calculating a χ2 Test of Independence in Excel 
(continued)

https://goo.gl/Hx5Ay7

In Figure 9.21, we used the following formula to accomplish this calculation in each cell:

=B19-B25

5. In Step 4, (O-E)2/E, for each cell, square the value from Step 3 and divide the result by the expected 
value from Step 2.

In Figure 9.21, we used the following formula to accomplish this calculation in each cell:

=(B31*B31)/B25

The sum of χ2 will be the grand total for the table.

6. Calculate the degrees of freedom by subtracting 1 from the number of rows in your contrast and 1 
from the number categories in your coding scheme. Multiple these 2 numbers together

For Figure 9.21, we multipled together (3-1) and (3-1) to get degrees of freedom equal to 4.

7. Use a chi-square calculator like the one at https://www.socscistatistics.com/pvalues/chidistribution.
aspx to calculate the p-value for your sum of chi-squares with your degrees of freedom.

https://goo.gl/Hx5Ay7
http://turner.faculty.swau.edu/mathematics/math241/materials/contablecalc/
http://turner.faculty.swau.edu/mathematics/math241/materials/contablecalc/
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 Procedure 9.3: Calculating a χ2 Test of Independence with an Online 
App

https://goo.gl/Hx5Ay7 

1. Go to the online app at http://turner.faculty.swau.edu/mathematics/math241/materials/contablecalc/ 
and enter  the number of rows and columns in the opening page of the app. Press Continue.

2. Enter a title, labels and data for your frequency table. Leave the option to display individual χ2 values 
checked and press Compute.

The app will return a frequency table like that shown in Figure 9.22 in which each cell holds the observed 
value, followed by the expected value (in italics), and the individual χ2 values. The sum of χ2, the degrees of 
freedom, and the probability value can be found below the table.

Figure 9.22: Results of the calculations for the online app for the χ2 test of independence (http://turner.faculty.
swau.edu/mathematics/math241/materials/contablecalc/).

https://www.socscistatistics.com/pvalues/chidistribution.aspx
https://www.socscistatistics.com/pvalues/chidistribution.aspx
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Interpreting the Results of a χ2 
test of Independence

The final step in the computation of the χ2 test of independence tells you the 
chances that the two dimensions of coding are associated with one another. 
That is, to what extent will values on the first dimension co-occur with values 
on a second dimension.

In the example shown in Figures 9.21 and 9.22, we see a very high sum of χ2 
(74.79 with 4 degrees of freedom) which could suggest that there is a very strong 
relationship between Frame and Alignment. A χ2 calculator (https://www.socsci-
statistics.com/pvalues/chidistribution.aspx) shows that this is highly surprising.

Figure 9.23: Block chart of the observed data from Figure 9.20.

A look at the block chart for the observed data in Figure 9.23 provides more 
detail about these surprises. In general, the observed values of Technical varies 
considerably depending on the Frame used. With Object and Practice, it is the 
most common category, but with Identity, it is the least common category. In 
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fact, as we see in Step 4 of Figure 9.21, the individual χ2 value for Technical with 
Identity is a high 17.03. The values of the other categories for Identity are also 
matters of surprise with high individual χ2 values (19.65 for Professional and 
23.91 for Social).

When we use Steps 1 and 2 to compare the observed and expected values 
in these three cells we can see that Professional and Social are both higher than 
expected (9 vs. 2 for Professional and 23 vs. 9 for Social) while Technical is low-
er than expected (5 vs. 26). Clearly, there is a surprising relationship between 
these two dimensions.

Unfortunately, because of the inflated sum of χ2, we cannot draw any con-
clusions about the significance of this relationship. As discussed earlier, a high 
sum of χ2 is often the result of a lack of independence among the data points. 
To get a clearer picture of what is going on here, we would turn to a One-Fac-
tor Multinomial Logistic Regression.

The χ2 test of independence gives us a way of seeing a relationship between 
two coding dimensions. But just as with our earlier χ2 tests, scarce data can 
compromise it as a measure of significance. If you have any cell values of 0 
or many cell values of less than 5, you should consider combining categories.

In addition, as we have just seen, inflated sum of χ2 may affect a χ2 test of 
independence. Thus, we always recommend that you go on to do a One-Factor 
Multinomial Logistic Regression to confirm any significance results from a χ2 
analysis.

Memo 9.2: Your χ2 Analysis
Record the frequency table that you used as input to the χ2 test. Record the 
results: your degrees of freedom, the sum of χ2 and the probability level. Check 
for an inflated χ2 value that would limit your ability to draw conclusions about 
significance.

If significant, use the individual χ2 values to determine which values are making 
the largest contribution. For these cells, compare the observed frequencies to the 
expected frequencies. Put into plain language what these comparisons mean in 
terms of what is surprising in your data.
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One-Factor Multinomial Logistic Regression
One-factor multinomial logistic regression is an analytic tool designed to ex-
amine the impact of a predictor variable on an outcome variable. With coded 
verbal data, the outcome variable is always the coding along a given dimen-
sion.

The predictor variable may be the values on the contrast built into the de-
sign of the data. In this case, it is designed to answer the question:

What is the likelihood of a given code given a value on the built-in 
contrast?

In this first form, we recommend you use this test as a follow-up analysis to 
the χ2 test of homogeneity.

The predictor variable may also be the values on a second coding dimen-
sion. In this case, one-factor multinomial logistic regression is designed to 
answer the question:

What is the likelihood of a given code along a second coding dimen-
sion given a value on a first coding dimension?

In this second form, we recommend you use this test as a follow-up analysis to 
the χ2 test of independence.

Running a One-Factor Multinomial 
Logistic Regression

The one-factor multinomial logistic regression works with the individual data 
points in your data set. Prepare your data for the app as detailed in Excel Pro-
cedure 9.4 paying particular attention to the labels of your columns. Then run 
the app using Procedure 9.5.

https://goo.gl/Hx5Ay7 
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 Procedure 9.4: Preparing the Data for a One-Factor Multinomial 
Regression

https://goo.gl/Hx5Ay7

1. Combine the coded data 
from individual data 
worksheets into a single 
worksheet, keeping track 
of which data comes 
from which worksheet.

2. Creating a new column in 
the combined worksheet. 
Label it as Case.

3. In this column, next to 
each segment, enter the 
name of the data work-
sheet from which the 
segment was copied.

4. Determine which column 
is to be used as the pre-
dictive factor and change 
its heading to Factor1.

Figure 9.24: Worksheet arrangement for a one-factor multinomial logistic 
regression.

The Factor1 column may be the one holding the values of your built-in contrast or it may be the one hold-
ing the values of your first coding dimension, depending on which variety of the one-factor multinomial 
logistic regression you are preparing for.

5. Determine which column is to be used as the outcome dimension and label it Dimension.
6. Delete the column holding the actual verbal data.

The online app will not work properly if the verbal data is left in the worksheet. Your worksheet should look 
something like the one shown in Figure 9.24.

Save this worksheet in a CSV (comma separated values) format using the File > Save As command.

https://goo.gl/Hx5Ay7
https://wac.colostate.edu/books/practice/codingstreams/
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 Procedure 9.5: Running a One-Factor Multinomial Regression

https://goo.gl/Hx5Ay7

1. Navigate to the online app at https://wac.colostate.edu/books/practice/codingstreams/.  
2. The interface should look like that shown in Figure 9.25.

Figure 9.25: Interface for the online app for multinomial logistic regression.

3. Click on the Browse button on the left. Navigate to and choose the CSV file holding your data.

The data should load.

4. Click on the tab labeled One Factor Data Table.

If the app returns an error, check your data setup following Procedure 9.4.

5. Compare the frequency table on the tab with the frequency table you created for your earlier χ2 analy-
sis.

Continued . . .

https://goo.gl/Hx5Ay7 
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 Procedure 9.5: Running a One-Factor Multinomial Regression (continued)

https://goo.gl/Hx5Ay7

If the frequency table does not match a frequency table you generated earlier, check that you are using the 
correct data file and that the columns are labeled appropriately.

6. To get the results of the regression, click on the tab labeled One Factor Model.
7. Wait until the calculation is completed.

The output will look like that shown in Figure 9.26.

Figure 9.26: Output of a one-factor multinomial logistic regression.

8. Make a copy of the output and place it in a worksheet along with your data worksheet. Label it Run 1.
9. Reload the app page in your browser to clear the data.
10. Click on the Browse button and load the same CSV file.
11. Click on the tab labeled One Factor Model.
12. Copy the output into a second worksheet labeled Run 2.
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Interpreting a One-Factor 
Multinomial Logistic Regression

The first step in interpreting the results of a one-factor multinomial logistic 
regression is ensuring your results are stable. This involves comparing the re-
sults of the two runs you have made. For the sample data the results for our 
two runs are shown in Figure 9.27.

Figure 9.27: Comparing the results of two runs of the app 
for one-factor multinomial logistic regression.

In our analysis, the code of Professional serves as the baseline for the out-
come dimension of Alignment. The first two lines in the two outputs shown 
in Figure 9.25 give the results for the other two Alignment codes, Social and 
Technical, compared with this baseline.

The next two lines in the output give the results for the Frame dimension. Here 
the category of Identity serves as the baseline, and these two lines give the results 
for the other two Frame codes, Object and Practice, compared with this baseline.

On each line, the first and last columns are your main focus. In the first col-
umn, labeled post.mean (posterior mean), you find the critical log odds values 
computed by the multinomial logistic regression. In the last column, labeled 
pMCMC, you find an estimate of the probability that the log odds could have 
occurred by chance. Asterisks mark those that may be considered significant. 
P values of less than 1 in a thousand (p < .001) are labeled with a triple asterisk 
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(***). Those with p values of less than 1 in a hundred (p < .01) are labeled with 
a double asterisk (**). Those with p values of less than 5 in a hundred (P < .05) 
are labeled with a single asterisk (*).

When you compare the two runs for stability, you want to see that they 
have the same results in terms of significance levels and somewhat similar log 
odds values. When we compare the significance values of the two runs shown 
in Figure 9.27, for example, we see that they both show significance values at 
p < .001 for Technical, for Object, and for Practice and we see that the log odds 
are somewhat similar. This assures us that the results are stable.

To understand these results, we take a closer look at the log odds. Looking 
at Run 1, Figure 9.26, we see that the log odds listed for traitDimension.Social is 
.09732. In other words, log-odds for being coded as Social relative to being cod-
ed as Professional is .09732. The fact that this number is positive shows that any 
segment is more likely to be coded as Social than Professional regardless of how 
it was coded for Frame. If we refer back to the frequency table of observed values 
repeated in Figure 9.28, we can confirm that the frequencies for the Social row are 
all larger than the Professional row. But the small log odds from the multinomial 
logistic regression tells us that this difference is not large enough to be surprising.

We look next at the results for traitDimension.Technical. Here the results 
are suggesting that the log odds for being coded as Technical relative to being 
coded as Professional are 1.23417, which is significant at p < .001. That is, any 
segment is significantly more likely to be coded as Technical than Professional 
regardless of how it was coded for Frame. Again, a look at the frequency table 
in Figure 9.28 confirms that the values for Technical are generally much higher 
than those for Professional. That is, there is less than one chance in a thousand 
that this would have occurred by chance if there were no true difference.

The next two lines show the impact of the Frame dimension, our predictor 
variable, on Alignment, our outcome variable. For Factor1Object, the log odds 
for being coded as Object relative to being coded as Identity are 2.17303, which 
is significant at p < .001. This means that if a segment were to change coding 
from Identity to Object along the Frame dimension, the multinomial log-odds 
for being coded as something other than Professional along the Alignment 
dimension would be expected to increase by 2.17303 units while holding all 
other variables in the model constant. In other words, the impact of coding a 
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segment as Object along the Frame dimension increases its chances of being 
coded as something other than Professional along the Alignment dimension. 
That is, when people wrote about objects, they did not often talk about the 
professional contexts for those objects.

Figure 9.28: Frequency tables from the χ2 test of independence for 
the same data used to produce the output shown in Figure 9.24.

For Factor1Practice, the log odds for being coded as Practice  relative to 
being coded as Identity are 1.39528, which is also significant at p < .001. This 
means that if a segment were to change coding from Identity to Practice along 
the dimensions of Frame, the multinomial log-odds for being coded as some-
thing other than Professional along the dimension of Alignment would be 
expected to increase by 1.39528 units while holding all other variables in the 
model constant. In other words, the impact of coding a segment as Practice 
along the Frame dimension also increases its chances of being coded as some-
thing other than Professional along the Alignment dimension. That is, when 
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people wrote about practices they did not often talk about the professional 
contexts for those practices.

These results are generally consistent with those of our earlier χ2 test of inde-
pendence, where we found a very high sum of χ2 (74.79) but were unsure of how 
to interpret this inflated result. With the significant results of the multinomial 
logistic regression, we can have greater confidence in this earlier finding and see 
some further patterns that are indicated by color in Figure 9.28. In gold, we see 
the three frequencies identified in the χ2 analysis as being unexpectedly different 
from their expected values. And in shades of orange we have marked those values 
that have been identified by the multinomial logistic regression as significant.

As we noted in our earlier discussion, the χ2 analysis suggested that something 
surprising is going on with the predictor variable of Identity. And, as we just noted, 
the significant log odds for Factor1Object and Factor1Practice also suggest some-
thing going on with this category: as coding on the Frame dimension moves out 
of the Identity category into the other two categories, the chances of being coded 
as Professional decrease significantly. In Figure 9.28, this is indicated by the light 
orange and medium orange cells in the Object and Practice columns compared to 
the uncolored cells in the Professional row. That is, when people wrote about prac-
tices and objects they did not often talk about them in their professional contexts.

The results of the multinomial logistic regression also tell us something else: 
the value for Technical compared to Professional is surprisingly high on the Align-
ment dimension. Though not examined by the earlier χ2 test for independence, 
this result is consistent with our frequency table of observed values. The dark 
orange cell in Figure 9.28 pinpoints an overall frequency of 148 for Technical com-
pared to the overall frequency of 13 for Professional. The log odds for traitDimen-
sion.Technical tell us that this is significant. And it might appear that the frequen-
cy of 49 for Social compared to the frequency of 13 for Professional would also be 
significant. But the log odds for traitDimension.Social tell us this is not the case.

Two-Factor Multinomial 
Logistic Regression

Two-factor multinomial logistic regression is an analytic tool designed to ex-
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amine the impact of two predictor variables on an outcome variable. With 
coded verbal data, the outcome variable is always the coding along a given 
dimension.

The predictor variables will be the values on a build-in contrast and the 
values on a second dimension. It is designed to answer the question, “Given a 
value on a built-in contrast, what is the likelihood of a given code along a second 
coding dimension given a value on a first coding dimension?” This is the test to 
use when you have data coded along two dimensions as well as a built-in con-
trast, a complex analysis that cannot be handled by a χ2 test.

In addition to looking for the main effects of the two predictor variables, a 
two-factor multinomial logistic regression can also look for a significant inter-
action between them. An interaction between two variables means the effect 
of one of those variables on a third variable is not constant—the effect differs 
at different values of the other. For the sample data we will be using show in 
Figure 9.29, an interaction would mean that the effect of Factor2 (the Frame 
dimension) on Dimension (the Alignment dimension) would be different de-
pending on the built-in contrast of Year. As we noted earlier in Chapter 7, a 
pattern of association between two dimensions may not hold true on both 
sides of a contrast; this is an interaction. A two-factor multinomial logistic 
regression will tell us if this interaction is significant.

Adding an interaction to a two-factor model may improve the fit of the 
model, but it is also possible that it does not improve it. For this reason, in 
the following procedures, we suggest that you run a two-factor multinomial 
logistic regression both with and without an interaction and then determine 
which is the better fit.

Running a two-factor multinomial 
logistic regression

The two-factor multinomial logistic regression, like its one-factor counterpart, 
works with the individual data points in your data set. Prepare your data for the 
app as detailed in Procedure 9.6 and then run a two-factor multinomial logistic 
regression both with and without interaction using Procedures 9.7 and 9.8.

https://goo.gl/Hx5Ay7


354   Chapter 9

 Procedure 9.6: Preparing the Data for a Two-Factor Multinomial 
Regression

https://goo.gl/Hx5Ay7

1. Combine the coded data from individual data worksheets into a single worksheet, keeping track of 
which data comes from which worksheet.

2. Create a new column in the worksheet. Label it as Case.
3. In this column, next to each segment, enter the name of the data worksheet from which the segment 

was copied.
4. Change the name of the column holding your built-in contrast to Factor1.
5. Change the name of the column with your first dimension to Factor2
6. Change the name of the column with your second dimension to Dimension.
7. Delete the column holding the actual verbal data.

The online app will not work properly if the verbal data is left in the worksheet. Your worksheet should look 
something like the one shown in Figure 9.29.

Figure 9.29: Worksheet arrangement for a two-factor multinomial logistic regression.

Save this worksheet in a CSV (comma separated values) format using the File > Save As command.

https://goo.gl/Hx5Ay7
https://wac.colostate.edu/books/practice/codingstreams/
https://wac.colostate.edu/books/practice/codingstreams/
https://wac.colostate.edu/books/practice/codingstreams/
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 Procedure 9.7: Running a Two-Factor Multinomial Regression with 
Interaction

https://goo.gl/Hx5Ay7

1. Navigate to the online app at https://
wac.colostate.edu/books/practice/
codingstreams/. The interface should 
look like that shown in Figure 9.25.

2. Click on the Browse button on the 
left. Navigate to and choose the CSV 
file holding your data.

The data should load.

3. Click on the tab labeled Two Factor 
Data Table.

If the app returns an error, check your 
data setup following Procedure 9.6.

4. Check the frequency table on the 
tab to make sure that the values look 
right.

If the frequency table does not look 
right, check that you are using the cor-
rect data file and that the columns are 
labeled appropriately.

5. To get the results of the regression 
with interaction, click on the tab 
labeled Two Factor Model with 
Interaction.

6. Wait until the calculation is complet-
ed.

The output will look like that shown in 
Figure 9.30. Figure 9.30: Output from a two-factor multinomial logistic 

regression with interaction.

https://goo.gl/Hx5Ay7 
https://wac.colostate.edu/books/practice/codingstreams/
https://wac.colostate.edu/books/practice/codingstreams/
https://wac.colostate.edu/books/practice/codingstreams/
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 Procedure 9.8: Running a Two-Factor Multinomial Regression 
without Interaction

https://goo.gl/Hx5Ay7

1. Navigate to the online 
app at https://wac.colos-
tate.edu/books/practice/
codingstreams/.

The interface should look like 
that shown in Figure 9.25.

1. Click on the Browse 
button on the left. 
Navigate to and choose 
the CSV file holding your 
data.

2. The data should load.
3. To get the results of 

the regression without 
interaction, click on the 
tab labeled Two Factor 
Model without Interac-
tion.

4. Wait until the calculation 
is completed.

The output will look like that 
shown in Figure 9.31.

Figure 9.31: Output from a two-factor multinomial 
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Interpreting a Two-factor 
multinomial logistic regression

The first step in interpreting the results of a two-factor multinomial logistic 
regression is choosing between the two tests you have run, one with interac-
tion and one without. In most cases, you will choose to use the one with the 
interaction as it will give you more information. But occasionally, the model 
with interaction will be a poorer fit for the data. To check for this, compare the 
DIC numbers at the top of the two outputs.

With our sample data, we see that the DIC for the run with interaction, 
shown in Figure 9.30, is 271.2435. Without interaction, the DIC, shown in Fig-
ure 9.31, is 272.0983. In general, the run with the smaller DIC is a better fit. 
These two DICs are pretty close to one another, so it may not make much 
difference, so we choose to work with the results with interaction.

To understand the results, we take a closer look at the log odds. Looking 
at Figure 9.30, we see that the log odds listed for trait Dimension.Social are 
.02296. In other words, log-odds for being coded as Social  relative to being 
coded as Professional are .02296. The fact that this number is positive shows 
that any segment is more likely to be coded as Social than Professional regard-
less of how it was coded for Frame or Year, although this difference is not big 
enough to be significant.

We look next at the results for traitDimension.Technical. Here the results 
are suggesting that the log odds for being coded as Technical relative to being 
coded as Professional are 1.15934, which is significant at p < .01. That is, any 
segment is significantly more likely to be coded as Technical than Professional 
regardless of how it was coded for Frame or Year.

The next line shows the impact of Year, the first of our predictor variables, 
on Alignment, our outcome variable. For Factor1Year2, the log odds for be-
ing Year2 relative to being coded as Year1 are .47757, which is not significant. 
This means that if a segment were to change coding from Identity to Object 
along the built-in contrast of Year, the multinomial log-odds for being coded 
as something other than Professional along the Alignment dimension would 
be expected to increase by .47757 unit while holding all other variables in the 
model constant. In other words, the impact of being Year2 rather than Year1 
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along the built-in contrast of Year does not have much effect on how it is coded 
along the Alignment dimension.

The next two lines show the impact of the Frame dimension, our second 
predictor variable, on Alignment. For Factor2Object, the log odds for being 
coded as Object relative to being coded as Identity are 2.14273, which is sig-
nificant at p < .01. This means that if a segment were to change coding from 
Identity to Object along the Frame dimension, the multinomial log-odds 
for being coded as something other than Professional along the Alignment 
dimension would be expected to increase by 2.14273 units while holding all 
other variables in the model constant. In other words, the impact of cod-
ing a segment as Object along the Frame dimension increases its chances 
of being coded as something other than Professional along the Alignment 
dimension.

For Factor2Practice, the log odds for being coded as Practice relative to be-
ing coded as Identity are 1.19465, which is also significant at p < .01. This means 
that if a segment were to change coding from Identity to Practice along the 
dimensions of Frame, the multinomial log-odds for being coded as something 
other than Professional along the dimension of Alignment would be expect-
ed to increase by 1.19465 units while holding all other variables in the model 
constant. In other words, the impact of coding a segment as Practice along the 
Frame dimension also increase its chances of being coded as something other 
than Professional along the Alignment dimension.

Our final results concern the interactions between Year and Frame. For 
Factor1Year2:Factor2Object, the log odds for being coded as Object relative to 
being coded as Identity under a coding of Year1 or Year2 are .52472, which is 
not significant. For Factor1Year2:Factor2Practice, the log odds for being coded 
as Practice relative to being coded as Identity under a coding of Year1 or Year2 
are .24464, which is also not significant. This means that neither being coded 
as Object nor Practice are significantly affected by Year.

We note that the data used here are slightly different than that used for the 
earlier χ2 test of homogeneity because here we only have two values for the 
built-in contrast of Year.

https://stats.seandolinar.com/statistics-probability-vs-odds/
https://stats.seandolinar.com/statistics-probability-vs-odds/
https://www.theanalysisfactor.com/chi-square-test-vs-logistic-regression-is-a-fancier-test-better/
https://www.theanalysisfactor.com/chi-square-test-vs-logistic-regression-is-a-fancier-test-better/
https://www.theanalysisfactor.com/interaction-association/
https://www.theanalysisfactor.com/interaction-association/
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2018/2179-2018.pdf
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2018/2179-2018.pdf
http://svmiller.com/blog/2014/08/reading-a-regression-table-a-guide-for-students/
http://svmiller.com/blog/2014/08/reading-a-regression-table-a-guide-for-students/
https://stats.idre.ucla.edu/stata/output/multinomial-logistic-regression-2/
https://stats.idre.ucla.edu/stata/output/multinomial-logistic-regression-2/
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Memo 9.3: Interpreting Your 
Multinomial Logistic Regression

Record the results of a multinomial logistic regression on your data. What are the 
log odds of each category? Which ones are significant at which level? Also record 
a frequency table for the data set.

For each result, write a sentence describing what each result means. Refer to the 
frequency tables for details. Overall, which predictor variables seem to have an 
impact on the way your data was coded?
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