
159DOI: https://doi.org/10.37514/PRA-B.2022.1664.2.17

Chapter 17. The Pleasurable
Difficulty of Programming

Benjamin Miller
University of Pittsburgh

Land Acknowledgment. I write from the city of Pittsburgh, in the ancestral
territories of the Osage Nation and the Shawnee Tribe; much of my climb up
the learning curve I will describe below took place in New York, home of the
Wappinger and Munsee Lenape peoples (“NativeLand.Ca”). As I have striven in
my research to situate graduate education in composition/rhetoric amid a flux
of topics, methods, and mentors, so too do I situate that disciplinary flux itself
within the long history of occupation, exclusion, preservation, and celebration
of these peoples and their traditions. I honor and thank those whose sacrifices
made possible my access to the resources I use every day, as well as those who
continue to educate me about these histories and their ongoing effects.

Why Programming? Why Now?
In Coding Literacy, Annette Vee traces the ways that computer programming has
suffused modern life, such that even people who don’t program themselves still
need a “computational mentality”: the ability to anticipate and respond to the
ways computer programs shape our lives and interactions (196-97). Alongside
everyday software applications like email and online shopping are a growing
number of tools for academic work, from library search portals to multimedia
composing platforms to suites for data analytics and visualization. In most cas-
es, the tools are available to non-programmers and programmers alike, because
the software provides user-friendly graphical interfaces: programming, that is,
that seems to obviate the need to look too deeply into the programming. “At first
glance,” Vee writes, “thousands of apps, menus, and interfaces promise to deliver
the power of programming to those who do not know how to write code” (22).
Yet she cautions that the ability to read and write code, with its requisite habit of
thinking “in hyper-explicit terms” (ibid), is no less important now. Increasingly,
she writes, “to navigate many professions and the demands of life in the twen-
ty-first century, we need to have computational skills, or at least know someone
who does” (197).

The history of computers and writing (C&W) offers plenty of examples of “writ-
ing teachers writing software” (to borrow the title of Paul LeBlanc’s 1993 book).
Even by 1984, efforts in process-oriented computer assisted instruction could fill
out a thirteen-chapter collection (Wresch), and a much larger bibliography by the
time of Mike Palmquist’s 2003 review. Since then, large-scale peer review platforms

https://doi.org/10.37514/PRA-B.2022.1565.2.17

160 Miller

like Eli Review (Hart-Davidson et al.) and MyReviewers/USF Writes (Melançon),
along with text-markup tools like <emma> (Desmet et al.) and Docuscope (Kaufer
et al.), both support writing pedagogy and generate datasets for further analysis.
More bespoke data visualization efforts in the field, such as those in a recent special
issue of Kairos, use programming frameworks like d3.js (Lindgren and Ridolfo),
amcharts (Turner and Gonzales), and R (Dighton), among others.

All the same, as Tim Lockridge recently noted, while “this type of work [i.e.,
building a digital tool to solve a problem] was once the norm in computers and
writing [. . . it] seems less so today” (“The Problem”). There are several good rea-
sons for this, as the rest of the present collection makes clear. First, many of the
questions and problems facing C&W are better addressed by interpersonal means,
rather than algorithmic ones; indeed, some problems are even caused by algo-
rithms, which tend to embed cultural assumptions as biases or blindspots (Noble;
Klein and D’Ignazio). If you’re analyzing the uses of digital multimedia by musi-
cians (Craig), or the impact of telepresence on a writing center conference (Fei-
bush), then individual, embodied human perspectives are essential. Second, many
of the digital tools by which we can preserve or present, say, interviews, already
provide a great deal of flexibility and power to their users, even without having
to touch a line of code. There’s no need to reinvent the reel to take advantage of
digital video editing software, for example, on top of which, the level of program-
ming skill required to make such software lends itself to dedicated specialists: en-
gineers, rather than writing scholars. Even questions and problems for which an
algorithmic approach makes sense, such as statistical analyses of large bodies of
text, are increasingly addressable without having to produce the code that pow-
ers the algorithms. Web-based corpus analytics suites such as Voyant Tools, or
built-in search-and-filter functions in scholarly databases like COCA (the Corpus
of Contemporary American English), have lowered the barriers to these kinds of
computational research methods in ways that are surely worth celebrating.

All the same, I find myself drawn to the open-endedness of programming. As
a discourse, it has much in common with writing more generally: rather than a
proscribed set of options to select from in a menu, programming languages offer
the materials by which to shape new approaches that fit the data and questions we
bring to it. In that sense, codework is rhetorical, addressing the present situation
by drawing flexibly on insights from the past. Like other forms of writing, writ-
ing with code can be both frustrating and tremendously rewarding, sometimes
even in the same working session. And as with writing, the process of working
through those frustrations is itself epistemically generative, forming a feedback
loop that can shift one’s sense of what’s important and how the pieces fit togeth-
er. So, despite the steep initial learning curve—and, yes, the ongoing challenges
of maintaining the ever-expanding set of files and executable scripts that form
my research codebase—I have continued to return to programming as a way of
centering my attention on a research project, getting a handle on my data, and
refining my understanding of what it must teach.

The Pleasurable Difficulty of Programming 161

In this chapter, I write to explain the draw (as well as some drawbacks) of this
kind of digital composing as a research method, and to demystify the process
for those curious about but unfamiliar with code. Toward that end, the heart of
the chapter is an extended example, or re-enactment, of a recent challenge in my
research, and the programming workflow I used to solve it. Inspired in part by
Dana Kantrowitz’s “The Making of a Poem, Live and Uncensored” in The Subject
is Writing, I trace a series of aims, misses, and rescues, presenting not only a re-
construction of what I was thinking, but also (some of) the code produced along
the way. In doing so, I will highlight key affordances of functional programming
that make it not only useful from the perspective of knowledge production, but
also affectively rewarding.

A Note About the Code in this Chapter
The code I share is not “live and uncensored”; it’s only a small part of a much larger
codebase, curated retrospectively. Even so, I realize it’s still a lot of technical lan-
guage and syntax to throw at you—and that, for some readers, any amount of code
will feel alien, or alienating. What’s more, my example comes from a statistically
oriented programming language, R, which may not be the first language you want
to try, even if you are convinced of the value of programming for writing research.
Nevertheless, I believe it is important to show the code itself, for several reasons.

First, I want to make the sight of code less alien. If we allow graphic user inter-
faces (GUIs) to hide all the conditional statements and assumptions that the code
makes explicit, we cede the ability to intercede in those operational decisions.
Even if you have no interest in programming yourself, developing what Vee calls
a “coding literacy” will help you communicate with those who do, with a better
sense of what the code makes easy or hard. Increased circulation of coding lit-
eracy has ethical implications: “If we want a more inclusive and equal society,”
Vee argues, “the writing of code should not be left to a handful of elite or isolated
groups” (224). Diversifying and expanding the group of people able to read code
is an important first step toward that more inclusive society.

Second, setting several examples alongside each other can help make visible
recurring patterns in the code, especially those that cross programming languages.
One or two examples could show you what programming looks like in the abstract,
but to really get a sense of how programming can work in the context of writing
research and problem-solving, I need to show you more than that. One key concept
I want to highlight is the high frequency of control flows: functions with inputs and
outputs, iterative loops that run a series of inputs through the same chunk of code,
if/then/else statements that divert the flow from one code chunk to another. Sec-
ond, I also want to call attention to the recursive nature of programming: the ways
new code integrates and recontextualizes old code, sometimes necessitating changes
to the old code (a.k.a. refactoring) to address false or incomplete assumptions made
apparent by the new use-case. A third key concept of programming as method

162 Miller

is task decomposition, which entails breaking large objectives into smaller pieces.
Seeing the iterative, interactive process of identifying, constructing, and combining
those smaller pieces is essential to understanding what’s involved.

In addition, I want to step through an extended sequence from problem to
program in order to recognize that plans for coding, like plans for writing, must
often shift as they are implemented. Learning to code can be difficult, and set-
backs are assuredly frustrating. But they are also a persistent feature of compos-
ing, and I don’t want to paper over that fact, or leave it for readers to discover and
become discouraged by. I come from a privileged background, in which I was
encouraged to believe that I could do anything if I put my mind to it, in which
the language at my well-funded public schools never felt foreign (both my parents
went to college, and my father has a Ph.D.), and thus early successes seemed in
easy reach. I only took one computer science course, and not until college, but it
was a lecture-and-recitation at Harvard that assumed most of us would explore
documentation and find most examples on our own. This again reinforced the
message that success was a given—but also implied that it was a matter of indi-
vidual persistence. Even with my already-internalized sense that challenges are
only temporary, only puzzles to play with, I found programming difficult; I can
see how, without that sense of arbitrary self-efficacy, it would be easy to respond
to such difficulty by saying, “programming just isn’t for me.”

So, it’s important to me to counteract the idea that good programmers just do
it right, the first time, on their own. On the contrary, when I really began learning
how to program for analysis while writing my dissertation, I had the advantage of
peer mentors from across the digital humanities whom I could turn to for example
code and turn back to with questions. I had coursework and a fellowship in Interac-
tive Technology and Pedagogy that helped me build that network of peer mentors.
Because I recognize that not everyone reading this will have the same local support
networks, or the same lifelong drumbeat of positive reinforcement, I hope the code
I share here—including the code I wrote that failed, and the kinds of steps I took to
try and fix it—will offer at least the starting place my friends1 and their code were
able to offer me, both as a graduate student at CUNY and as early faculty at Uni-
versity of Pittsburgh. At the end of this chapter, I will point to additional open re-
sources for those interested in taking up programming as a digital research method.

My Research Program
The context for the work I’m discussing in this chapter is a book-length study of
doctoral dissertations in rhetoric, composition, and writing studies—several thou-
sand of them, submitted over a fifteen year span—as a way of advancing what Derek
Mueller calls a network sense of the field: “incomplete but nevertheless vital glimps-
es of an interconnected disciplinary domain focused on relationships that define

1. Thanks to Micki Kaufman, Evan Misshula, Matt Lavin, and Scott Weingart.

The Pleasurable Difficulty of Programming 163

and cohere widespread scholarly activity” (3). Dissertations are well-suited to such
questions of disciplinarity: they are widely distributed, sustained, and required to
remain recognizable as work “within” the field, even as they advance new claims.

My book is primarily a descriptive study, aiming to intervene in scholarly de-
bates about what the field should be doing by stepping back to first consider what we
have been doing. One way to understand the goal of describing the field’s practices
(without predicting future behaviors or pre/proscribing what people ought to do)
is that I’m engaged in a mapmaking project: I’m looking to chart the disciplinary
landscape, to identify the existing balance of subject areas and methods, and there-
by help newcomers navigate the potentially overwhelming range of possibilities.2

Digital tools offer two key advantages in this pursuit. First, they can read a lot
faster than I can; and second, they make analysis more replicable. As Mueller points
out, the size of our disciplinary domain has grown beyond what even a diligent
reader could attend to, even reading all day, every day. Computers, though, can ab-
stract data into metadata, consolidating great quantities of information into tables
and graphs, which in turn amplify signals that human readers can interpret. Susan
Lang and Craig Baehr clarify that such computer-assisted analysis doesn’t change
the responsibility or focus of human interpretation so much as the scale of what’s
being considered. Even so, “data and text mining extend [traditional humanities
research activities] beyond what it is possible for us to do as individuals without
the assistance of computer technology, as large amounts of numeric or textual data
can be examined for various types of relationships, including classes, clusters, asso-
ciations, and patterns” (Lang and Baehr 178). One of the traditional activities they
specifically call out is reflection, reminding us that these patterns can’t be taken as
neutral or inevitable. Still, by externalizing part of the process of discovery into
code, computers make it easier for subsequent researchers—or even ourselves—to
repeat the process in a new context, to thoughtfully examine what changes, what’s
expected but missing, what other explanations might underlie the patterns we see.

Programming My Research
As I suggested above, several software tools—including free tools—now exist to
make it easier to classify, cluster, or otherwise detect associations and patterns in
textual data. Laurence Anthony’s concordance software, AntConc, can identify
words that stand out more in one group of documents than another; it can also

2. I want to be clear, though, that I’m not trying to make a once-and-only map of the
field. For one thing, maps always, of necessity, leave things out: a map that includes every-
thing is just the territory itself, simultaneously perfect and pointless. I am, rather, trying
to capture one set of phenomena; different methods, and different vantages, offer different
senses of the network, and each will be useful in their own ways. For another thing, fields
do and should change over time. But if we are interested in how things change over time,
we need to take stock periodically, to establish points of comparison.

164 Miller

show keywords or phrases of interest surrounded by the preceding and following
parts of each sentence where they occur. Voyant-Tools, a full-service text-analytics
suite that runs in a web browser, offers these and many other operations besides: it
can show the frequency of words rising and falling across the documents in a textu-
al corpus; it can visualize the corpus as a word cloud, or as a set of two-word phrases
that appear frequently together (bigram collocates), and much, much more. That
these and similar tools are available, and free to use, marks an incredible advance in
access to digital research methods, and I highly recommend them, especially in the
early stages of becoming familiar with a body of texts.

At the same time, there are limits to what they provide. In particular, the out-
puts are essentially endpoints: the tool produces a graph or a table, and that is
the graph or table it produces. Further transformations are not generally possible
within the website or dialog box from which you operate the software. To be fair,
there are usually options that you can vary, and you can sometimes filter an out-
put table by one search term at a time, e.g., to narrow a list of all collocated terms
to one particular term of your choice; but if you wanted to, say, identify a subset
of documents based on the presence or absence of those collocates, and to pro-
ceed with a follow-up analysis of that subset, that’s usually a move the tool won’t
support. You would want to program your own custom function.

Because I’m interested in what subject matter people are writing about, I’ve
been drawn to topic modeling, a machine-learning method for identifying groups
of words that tend to co-occur within sets of documents in a large corpus (Blei et
al.; Weingart). Given several such groups to find, the algorithm calculates two sets
of probabilities, one matching words to groups—the “topics”—and one matching
topics to documents. The software generating the topics will generally also tell
you how much of the corpus is associated with each topic. In the case that I de-
scribe below that software is MALLET,3 an open-source command-line tool4
most often used for topic modeling using the Latent Dirichlet Allocation method
(but which is also generalizable to other applications, and other implementations,
for those with a coding knowledge of the Java programming language).

By default, topics in MALLET (and, often, elsewhere) come labeled with the
words associated with them at the highest probabilities, leading to labels such as
these:

44. online web site media internet sites social users

3. MALLET is an acronym for MAchine Learning for LanguagE Toolkit; see http://
mallet.cs.umass.edu/about.php. VoyantTools can also produce topic models, using a Ja-
vaScript implementation of the same algorithm (Latent Dirichlet Allocation); see https://
voyant-tools.org/docs/#!/guide/topics.

4. The “command line” refers to the text-only interface accessed via Terminal on Mac
computers, or PowerShell on Windows, and as the primary mode of engaging with Linux
systems. For more information on the command line, see https://learnpythonthehardway.
org/book/appendix-a-cli/ex1.html.

http://mallet.cs.umass.edu/about.php
http://mallet.cs.umass.edu/about.php
https://learnpythonthehardway.org/book/appendix-a-cli/ex1.html
https://learnpythonthehardway.org/book/appendix-a-cli/ex1.html

The Pleasurable Difficulty of Programming 165

information blog community people post virtual com-
munication blogs website content page websites

45. technology digital computer computers tech-
nologies online media university web writing elec-
tronic technological composition software design
access information internet hypertext multimodal

From just the words alone, we can infer that documents with high levels of
these two topics discuss matters of likely interest to the computers and writing
community: online communication and community, electronic writing, multi-
modal design, and so on. But suppose you wanted to go beyond the words them-
selves, to look at abstracts or the full text as a way of understanding the topics?
Andrew Goldstone has built a beautiful interactive browser that allows naviga-
tion among terms, topics, and documents (Goldstone), but to make it work with
your own data, you’ll need to be able to download and run his custom scripts in
the R programming language—and potentially to modify them, too.

To help explain what that would entail, in the pages that follow I present an
example of my own workflow in R. It begins with a question about how best to
interpret the topic model, and a challenge in the way MALLET represents the
model data. I then write a multi-step plan, in English, for how to surmount that
challenge. As I move to implement the plan in code, it reveals new problems, re-
quiring a revision of the plan. The final working implementation strings together
several smaller pieces of code into a composite script. Interspersed throughout
the examples—which will appear in a fixed-width font when they are written for
the computer to execute—I will point out important patterns that transcend pro-
gramming languages, as well as define terms or explain bits of R-specific syntax
that are essential to reading comprehension of the code.

I write, revise, and execute my code using a piece of software called RStudio,
an integrated development environment (IDE). What it integrates, specifically,
are several elements of a programming workspace that will be common across
languages: in that sense, my descriptions of R would be equally applicable to
working in Python (through an IDE like Spyder or IDLE) or Ruby (through an
IDE like Aptana). These include:

• A text editor, where you can write and store programs that can be execut-
ed repeatedly at a later time. These files can then also refer to each other,
e.g., to load or execute a function you have written previously. Ideally, the
text editor includes features to improve the legibility of the code, such as
syntax highlighting5 or bracket folding.6

5. That is, formatting chunks of text in different colors or weights to signal the
role each chunk plays in the program.

6. That is, allowing the user to collapse or expand discrete sections of code that
act as a single unit, which are often demarcated with parentheses or brackets.

166 Miller

• A console, in which commands entered take effect immediately and any
outputs or errors are displayed.

• A list of current variables and what they store, sometimes called the envi-
ronment. In RStudio, this list also includes any user-defined functions that
are currently loaded.

• A package manager, indexing the external libraries that are available on
the system and enabling quick installation, loading, or unloading of those
libraries.

• Searchable documentation for functions (both those included in the base
distribution and in distributed packages), clarifying the expected inputs
and outputs. These often provide examples, though these are not always
as illuminating as one might hope; in such cases, external sources like
Stack Overflow (https://stackoverflow.com) become an essential part of
my workflow.

RStudio also includes a history of commands executed by the console, and a
window for displaying plots and charts. These elements work together: in most
IDEs, you should be able to write code in the text editor and execute it in the
console, either all at once or only selected lines; the outputs can then be stored in
variables, if your code says they should, so you can do what you’d like with them
next. This is essential for finding and fixing bugs in complex programs because it
allows you to check interim values and confirm that your code is doing what you
think it’s doing. (For me, at least, this is not always the case, especially at first.)

Figure 17.1. The RStudio Integrated Development Environment (IDE). Clockwise
from bottom right, the four quadrants show the text editor; the console;

the environment of defined functions and variables; and the package
manager. Documentation can be accessed through the “Help” tab in the
upper left quadrant. (Note that these locations can also be customized.)

https://stackoverflow.com

The Pleasurable Difficulty of Programming 167

Setting the Stage: A Data Challenge and a Plan

For my research purposes, to better grasp the distribution of subject matter across
RCWS dissertations, I was especially interested in finding clusters of related top-
ics, like Topics 44 and 45 above. Following Rolf Fredheim and Ben Schmidt, I
am convinced that trees showing such relations among topics help to mitigate
the challenges in choosing the number of topics, as the LDA algorithm requires.
Clustering topics also gives statistical heft to the intuition that areas of inquiry
overlap and diverge in complex ways: when we say, for example, that computers
and writing is like technical communication in some ways or like cultural studies
in others, clustering can add to the evidence we have for such affinities and make
them easier to compare.

To figure out what “relations among topics” means, though, takes a bit of dig-
ging around under the surface of topics’ labels—and, in general, programming
for data analysis often begins with determining the shape of the data, and wheth-
er reshaping it will make the data more amenable to computation. (It often does;
see Lang et al. section 5.2.) Underlying MALLET’s assessment of “top words” in a
topic is a table of links between words and topics, stored as a plaintext (*.txt) file
that looks like this:

0 em 11:13057 49:6232 33:736 15:654 4:190 36:123 40:119 37:103
44:67 48:44 42:40 26:38 18:33 16:25 13:24 3:4
1 vernacular 4:2080 19:1625 13:1611 20:1502 8:737 45:274 49:148
11:116 43:48 16:34 25:20 33:7 28:7 31:3
2 rhetorics 32:7604 1:3383 31:2085 8:1577 22:1480 4:1332 19:798
37:725 9:631 3:543 45:460 42:96 49:43 44:31
3 transgression 37:260 47:246 20:208 12:195 1:117 9:103 6:97
38:51 24:48 28:35 15:34 14:25 48:24 42:19
4 control 5:8000 20:6867 37:4924 45:4198 12:4089 17:3373
48:2853 30:2802 44:2679 41:2649 18:2496 1:2208 28:1720 3:1423
43:1028 0:936 27:871 47:824 26:805 15:638 6:572 31:542 11:449
22:438 46:398 16:378 21:345 42:342 19:258 23:250 7:245 49:211
29:125 38:117 24:110 39:99 4:96 32:41 13:41

Each line begins with an integer as an index, starting from zero and going
up to the number of tokens in the corpus—in this case, over 1.6 million.7 This is
followed by a space and then the token itself, followed by a space-delimited list
of key-value pairs; that is, each colon-linked pair includes a topic number and
an observation count showing the model’s current estimate of how many times
that token appeared in the context of the given topic, i.e., accompanied by other
tokens also associated with that topic.

7. I don’t recommend opening a file of that size with Microsoft Word! To get the
preview, essential for determining the file’s structure–and thus for any follow-up analy-
ses of that data–I used the Terminal command head, which displays only the first few
lines of a given file.

168 Miller

MALLET’s format here presents several obstacles for finding the proximity
(or, equivalently, the distance) among topics. First, these topic-observation pairs
are given not in order of topics, but in descending order of observation count for
each token; there’s no immediate way to read all the values for a topic of interest.
Second, because many tokens are never observed in the context of many topics,
the number of observations in each row varies significantly. So, we can’t simply
transpose the rows and columns of the table to get a readout of words observed
for each topic—even though something similar must be happening somewhere
under MALLET’s hood to produce those labels of top words per topic.8

Just because the operation isn’t a simple one, though, doesn’t mean we can’t
perform it; we just have to do a little extra work. Now that we have a sense of
what the data looks like, we can plan to transform the data into a shape that will
make it easier to measure distances. To build a table indexed by topic, not token,
we need to . . .

1. Read in the data, ideally in a format that’s easy to index.
2. Find a given topic, if it exists, as the key in a key:value pair somewhere in

the row for a token. Store the value (the observed count of that token) for
that topic.

3. Repeat step 2 for each token, making a cumulative list of tokens and
counts for our given topic.

4. Repeat step 3 for each topic.

Once we have that table of topics, existing functions should be able to mea-
sure the distances.

Coding’s Core: Defining Functions, Explaining Syntax

To begin step 1, reading the data file into R, I begin like this:

get.wordtopic.grid <- function(dataset_name = “noex-
cludes2001_2015”,
ntopics = 50,
iter_index = 1
){
Things will happen here
}

I’m going to pause there for a moment to explain the syntax, for any readers
new to code or to R specifically. In R, most alphanumeric strings9 are treated by

8. Perhaps if I were fluent in Java, I could locate and save such an internal MALLET
state. Alas! But all the more reason to become proficient in more programming languages.

9. How a “string” is delineated can vary from language to language. In R, as shown here,
only a space ends a variable name, allowing periods and underscores to be included; in Ja-
vaScript, by contrast, the period is reserved for another function, and would not be allowed.

The Pleasurable Difficulty of Programming 169

default as variables—labels, essentially, for some other object in memory. Here,
for example, get.wordtopic.grid is a variable, as are dataset_name, ntop-
ics, and iter_index. A string that’s meant to be a text value, rather than a vari-
able, is framed in quotation marks, as in my name for the dataset I’m analyzing
here, “noexcludes2001_2015”. To define the contents of a variable, you can
assign something to it, either with a single equals sign (as on the right, where the
number of topics, ntopics, is defined as 50) or with a kind of arrow made of a
less-than sign and a hyphen (<-), which stores whatever comes to the right of it
inside the variable to the left.

In this case, what’s “to the right of ” the arrow is much longer than a single
value, because it begins with function. This signal word tells R to include, un-
der the label get.wordtopic.grid, everything inside the parentheses and curly
braces that follow. I’ll have more to say about functions in a moment.

The final piece of syntax you’ll need to read R code is the comment, shown
here in gray. Essentially, any text from the # symbol through the end of the line
where it appears is ignored by the computer. Instead, such “commented out” lines
are aimed at a human audience, whether the programmer themselves or any oth-
er readers coming into the code, to try to make it easier to understand. (Note that
other programming languages will use other symbols to signal the start of com-
ments, and in some cases also to signal explicitly where they end.) Comments
are most often used to label chunks of code, explaining what they’re meant to do;
they can also be written in advance of the code itself, as a way of making plans
and marking placeholders.

Running the code snippet above will, as Auden said of poetry, make nothing
happen—and not only because I’ve used a comment to simplify it. The code, as I
mentioned above, defines a function, which means it can take a series of inputs, or
parameters (the variables inside the parentheses), and act on them, eventually re-
turning an output. Defining the function, however, does not execute the function;
rather, it waits for something else—another script, or the user at the console—to
pass it inputs. In that sense, as Auden also said of poetry, a function is “a way of
happening, a mouth” through which information can later stream.

When I first started to use programming as a research method, while writing
my own dissertation, I initially thought of scripts as files that would immediately
execute a series of commands whenever I opened them, and that running entire
files would be the primary way I would engage in analysis. If anyone reading this
is sympathetic to that view, I hear you–and yet. I quickly came to realize that I
needed, often, to batch those batches together, in various configurations. I came
to realize that if I wanted to run the same analysis on two different subsets of
data, or to try an analysis with two different assumptions about (say) how much
of a document had to involve a particular topic for the document to count as be-
ing “about” that topic, I wanted to be able to save those different configurations
without having to save multiple versions of essentially the same file, different
only in one or two lines. I realized, in other words, that instead of files that al-

170 Miller

ways run functions, I wanted files that would load functions, so I could then call
the functions interactively, at the console. Many of my files now consist solely
of a set of custom function definitions, followed by a section which will never
run on its own, where I save function calls in the various configurations I want
to return to.10

Loading Data and the Importance of Parameters

Armed with that reading framework, I can now share a fuller version of the code
snippet above, incorporating some more content inside the curly braces.11 Inline
comments beginning with a single # are standard descriptive comments; to gloss
specific R commands for this chapter, I’ll use ##.

get.wordtopic.grid <-
 function(dataset_name = “noexcludes2001_2015”,
 ntopics = 50,
 iter_index = 1
){
 # Build the filename to load, based on parameters of
 # the model (which dataset, the number of topics, the
 # particular iteration of the model-building
 # algorithm) and MALLET’s naming convention.

 filename <- paste0(dataset_name, “k”, ntopics,
 “_iter”, iter_index, “_wordtopics.txt”)

 ## NB: the paste0() function, built into R,
 ## combines its parameters into a single string,
 ## with no spaces.

 # Next, store and format the file – but only if it
 # exists. Otherwise, return an error message
 # clarifying what went wrong.

 if(file.exists(filename)) {

10. Careful functional programming also solves a problem of variable isolation or con-
tamination, what is sometimes referred to as a “clean” or “unclean” workspace. In many
languages, including R, values assigned to variables within the scope of a function do not
propagate outside of that function: in fact, variables declared only within that function
do not even exist except while the function is being executed. This is important because
it prevents values from being overwritten when, as sometimes (okay, often) happens, the
same variable name is used in more than one file. Should some, but not all, shared vari-
ables be changed in the global environment assumed by freestanding batch-style code
execution, the scripts would run with a mixed set of assumptions, leading to errors or
nonsensical results that may be difficult to retrace.

11. Note that I’m ignoring, for the sake of streamlining the code, considerations like data
files located elsewhere on the disk, but those locations could be included as well, if needed.

The Pleasurable Difficulty of Programming 171

 wt <- read.table(filename, header=FALSE,
 fill=TRUE, col.names=c(“index”, “token”,
 paste0(“TopicRanked”, 1:ntopics))

 ## NB: read.table() is also a built in R function,
 ## with parameters for the source file, how to name
 ## columns, etc. Here, paste0() is used to generate
 ## column names in a sequence from 1 to the value
 ## of the ntopics variable.

 require(data.table)
 wt <- data.table(wt)

 ## require() loads a library of external functions;
 ## here, I use the data.table() function in that
 ## library to improve the formatting and indexing
 ## of the word-topic table.

 } else {

 stop(“’get.wordtopic.grid R’: could not load
 word-topic pairs from file “, filename)

 ## stop() is a built-in R function to exit early
 ## and return an error message.
 }

 return(wt)

 ## Exit the function, with the value of the wt
 ## variable as the output.
}

More than the specific tasks performed by this short function, I want to draw
your attention to the ways the function’s parameters—the list of inputs—are in-
corporated into the function body. Almost immediately, they are combined into
a new variable, filename, which in turn is used to check conditions (if(file.ex-
ists(filename))) and, depending on the outcome of that check, to generate ei-
ther a new data object or an error message. There is little in the function that can
work without drawing on one or more of the parameters named. Significantly,
parameters are inherently changeable: the values after the equals signs at the start
of the function will be used by default, if nothing else is specified in the function
call, but they can be overridden easily at call time. Depending on how the func-
tion is written, no defaults need to be provided at all—in which case, some value
for that parameter must be named outright every time the function is called. In
this way, parameters encourage researchers to be explicit about what conditions
they’re assuming; they also encourage systematic variation of those inputs, which
helps me interrogate my assumptions, and what they reveal or mask.

172 Miller

In the present example, by splitting out the dataset_name as a changeable
parameter, I signal that I expect to use different corpora and subcorpora as I
continue with this project. By allowing the number of topics to vary, in ntopics,
I remind myself that the topic model will look different if I split the corpus into
100, or 150, or 10 topics, instead of the 50 I’m working with primarily. And the
final parameter, iter_index, reminds me that the LDA algorithm is non-deter-
ministic, and that even repeated runs of that algorithm with the same dataset and
number of topics will vary, at least a little, in its assignments of tokens to topics.
(We can expect that the major divisions of the corpus will remain—one reason I
want to study topic clusters—but this expectation needs to be interrogated.)

Task Decomposition: Lines, Loops, and Mid-Process Feedback

The get.wordtopic.grid() function above, when called, will do more than
load the plaintext output by MALLET into R; it will also convert the space-delim-
ited values into an actual table, aligning and adding column labels as it goes, mak-
ing the data much easier to read and index. The first few lines now look like Table
17.1, with the columns continuing off to the right up through TopicRanked50:12

Table 17.1. Data loaded into R and reformatted
index token TopicRanked1 TopicRanked2 TopicRanked3 TopicRanked4 …

0 em 11:13057 49:6232 33:736 15:654 …

1 vernacular 4:2080 19:1625 13:1611 20:1502 …

2 rhetorics 32:7604 1:3383 31:2085 8:1577 …

3 transgression 37:260 47:246 20:208 12:195 …

4 control 5:8000 20:6867 37:4924 45:4198 …

5 york 12:20054 18:12124 13:9297 1:6256 …

RStudio makes it possible to view the results in the console or in a more tabu-
lar data inspector. But if we want to do more than look at the results—which was
the whole point of programming, rather than using pre-built tools—then we need
also to bind the results to a variable that we can then pass along to other functions.
Thus, when calling the function, we instruct R to hold onto the output: wt <-
get.wordtopic.grid(). (Leaving the parentheses empty uses the default values
for dataset, number of topics, and model iteration.) After entering this call in the
console, the variable wt will now hold all million-plus lines and 52 columns.

12. In truth, for this particular iteration of the model, the columns TopicRanked50 and
TopicRanked49 are blank–but most have a value even as far out as TopicRanked48.

The Pleasurable Difficulty of Programming 173

In the plan outlined above, we have now reached step 2, in which we’ll build
a function to find and store values from one small unit, so we can then call that
function repeatedly for the whole big list of units:

1. Read in the data, ideally in a format that’s easy to index. [Done!]
2. Find a given topic, if it exists, as the key in a key:value pair somewhere in

the row for a token. Store the value (the observed count of that token) for
that topic.

3. Repeat step 2 for each token, making a cumulative list of tokens and
counts for our given topic.

4. Repeat step 3 for each topic.

Because we’ll need to search every topic and row, I don’t want default values
for these parameters. And by requiring that a word-topic table be passed in as a
parameter, I insist that it already exist before this new function is called: other-
wise, we would have to build it anew each time, at a tremendous cost of time.

find.topic.in.one.row <-
 function(topic, # what we’re looking for
 rowindex, # which row to look in
 wt # a word-topic table
){
 # Build the search string from a topic number,
 # converting from 0-indexed to 1-indexed

 my_expr <- paste0(“^”, topic-1, “:”)

 # Use it to find a column. It should match exactly
 # one, or none.

 colindex <- grep(my_expr, wt[index == rowindex])

 ## grep() is a built-in search function.

 # If nothing’s found, the length of colindex will
 # be 0, which an “if” statement will interpret as
 # False; if the length is greater than 0, “if” will
 # interpret it as True.

 if(length(colindex)) {
 value <- just.value(wt[rowindex, ..colindex])

 ## just.value() is a function I’ve defined
 ## elsewhere to extract the second half of a
 ## key:value pair, a task that recurs fairly
 ## often.

 } else {
 value <- NULL

174 Miller

 }

 return(value)
}

One key advantage of the process of decomposing the overall data-trans-
formation task into a small chunk we can repeat—into a series of functions,
rather than one big function—is that it allows us to confirm each small chunk
works as expected . . . or doesn’t. When I run find.topic.in.one.row() on a known
token (“vernacular,” with row index 1 in the word-topic table shown earlier),
and I search for its top-shown topic (topic 4), the value returned is not 2080, as
expected, but NULL. A little digging in the help page for the search function,
grep(), reveals why: it assumes that the search space will have a particular, con-
sistent format, and it turns out that R tables use that format only for columns,
not rows. The search is quietly failing. Had we not put specific known values
in to test with, we could have looped through tens of thousands of rows and
gotten no results—or worse, misleading results–before realizing something was
wrong.

I have argued before (Miller) that writing is like finding one’s way through
a maze,13 and in my experience writing code is similar. The setback of an un-
expected data-type mismatch is a frequently recurring obstruction in the maze.
One solution is to try to find another tool, i.e., another function, that does work
with the datatype we’re looking at; in this case we’ll need to delve into a side lab-
yrinth of linked help pages, maybe even searching the web to discover a whole
new library that deals with tables in a new way. Another solution is to re-examine
our initial plan and see if there’s a way to just get around the barrier without too
much cost.

In this case, because the search tool already works with columns, we can up-
date our plan to search by columns instead of by rows:

1. Read in the data, ideally in a format that’s easy to index [still done!]
2. Find a given topic, if it exists, as the key in a key:value pair everywhere it

appears in the column for a particular topic-rank
3. For each match in step 2, note the token, and store the observed count of

that token for that topic
4. Repeat steps 2 and 3 for each column / topic-rank, making a cumulative

list of tokens and counts for our given topic
5. Repeat steps 2, 3, and 4 for each topic

The row vs. column question is a recurrent problem-class for data analysis:
the sooner we learn to recognize it as a pattern, the sooner we’ll notice when it
happens, and the more confident we can be that we have a solution . . . and what

13. More specifically, a Zelda-like dungeon filled with traps, puzzles, and enemies–but
with treasures and increased life-force as a reward for making it through.

The Pleasurable Difficulty of Programming 175

kinds of new wrinkles those solutions introduce. In this case, one wrinkle is that
we’ve gone from a unique result for each step in the loop to a list of matches, be-
cause the same topic can be top-ranked for more than one word. I therefore need
to return a table at each point, which will need to be merged later.

find.topic.in.one.col <-
 function(topic, # what we’re looking for
 rank.col, # which column to look in
 wt # a word-topic table
){

 # load required library
 require(data.table)

 # Build the column name from a topic rank
 colname <- paste0(“TopicRanked”, rank.col)

 # Build the search string from a topic number,
 # converting 0-index to 1-index)
 my_expr <- paste0(“^”, topic-1, “:”)

 # Search the column, allowing for more than one
 # possible result
 index <- grep(my_expr, wt[[colname]])

 # Use the search results to extract tokens
 tokens <- wt[index, token]

 # ... and key:value pairs
 key.value.pairs <- wt[index, ..colname]

 # Extract values from the key:value pairs
 values <- sapply(key.value.pairs[[1]], just.value)

 ## The need to apply a function across all members
 ## of a list is common enough that R has a set of
 ## built-in functions, including sapply(), to make
 ## it easy.

 # and return as a table
 result <- data.table(token_ind = as.integer(index),
 token = as.character(tokens),
 weight = as.integer(values))
 return(result)
}

Again, we’d better test to make sure that works! Trying as above to find
“vernacular,” we can run find.topic.in.one.col(topic = 5, rank.col
= 1, wt = wt), which returns this table (of which only the first 5 and last 5
rows are shown):

176 Miller

token_ind token weight
1: 2 vernacular 2080
2: 267 chinatown 35
3: 462 american 33101
4: 474 americans 11094
5: 568 races 1494

24871: 1615776 asunky 1
24872: 1615781 lesssss 1
24873: 1615782 unprobable 1
24874: 1615783 sollubles 1
24875: 1615784 hypnotical 1

There’s our expected result at the top of the list. We’re safe, then, to move on
to step 4: repeat the process across all columns, building up a combined list of
tokens and weights for a single topic.

Insights and Upgrades Along the Way

Eagle-eyed readers will have noticed that the top topic for “vernacular’ had been
listed as 4, but our search was for topic 5. This is because the fifty topics in MAL-
LET’s output are numbered 0-49 but trying later to write a query with a topic of
0 would return an error, so we need to increment them all by one. Care to guess
whether I anticipated that error in advance, or had to stub my toe on the error to
discover it? There’s a reason I try to move slowly, confirming my footing at each
step.

Other things we can discover by moving slowly and inspecting our interim
results include those strange words down at the bottom of the frequency list:
“asunky,” “lesssss,” “unprobable.” Each of these tokens was observed only once,
even though we’re limiting our search here to the topic with the highest value
in each row. With the table at well over a million rows, we can obtain a signifi-
cant speed boost by setting a lower bound on how many observations we want
to consider: another function, taking as parameters the word-topic table and a
threshold frequency for each word. (After some experimentation, I found that
a threshold of 2 reduces the table from 1,616,842 words to 544,036; a threshold
of 5 drops it down to a still sizable 254,092. And five mentions of a term in a few
thousand documents still signals a very low-frequency word.)

Now, Where Were We?

I jest, but for a serious reason. Programming—and especially debugging—fre-
quently asks me to scale-shift, sometimes zooming way in to the level of single
punctuation marks for debugging, sometimes zooming out to remember why I
wanted this function in the first place; a lot of the time is spent in between. This is
also true of other forms of writing, to be fair, but it sometimes seems an especially

The Pleasurable Difficulty of Programming 177

prominent feature of programming, which rewards coders for breaking down
large-scale challenges—like measuring the similarity of topics—into ever smaller,
modular pieces that can be carefully inspected and quality-controlled before being
assembled into ever larger, more complex machines. I forgive you, and hope you’ll
forgive me, if you’d momentarily forgotten that we’re building a table directly relat-
ing topics to the observed frequencies of tokens in the context of those topics. Or
that the purpose of building such a table was so that we can measure the distance
from one topic-word vector to another, and thus to identify clusters of topics. The
topic-clusters themselves are in service of the larger goal of mapping the range of
research activity in graduate dissertations, as representative of the field. But, to scale
back down again, the example of the dissertation topic-clusters is, in this chapter,
just one example of the kind of custom analytical work made possible by program-
ming, work not supported by more plug-and-play digital research tools.

Wrapping Up by Wrapping Functions in Other Functions

From above, we have a function that finds the tokens associated with a topic when
it appears at a particular rank. Two more functions will suffice to get us from
there to the fully searchable table: one, keeping the same topic, that iterates across
all ranks; then another to iterate that function across all topics. I’ll simplify a little
to show the essentials:

find.topic.in.all.cols <-
 function(topic, # what we’re looking for
 ntopics, # how many loops to make
 wt, # a word-topic table
 threshold = 5 # minimum weight per token
){

 require(data.table)

 # start with an empty container,
 # with specified data types

 topic_word_vec <- data.table(token_ind = numeric(),
 token = character(),
 weight = numeric())

 # then, to fill it, loop through the columns,
 # from 1 through the total number of topics,
 # because that will also be the largest possible
 # topic rank.

 for (column in seq_len(ntopics)) {

 # each time through the loop, attach one more row
 # to the existing list...

178 Miller

 topic_word_vec <-
 rbindlist(list(topic_word_vec,

 # ... by calling the function defined earlier.
 find.topic.in.one.col(topic, column, wt)
))
 }

 # (here we could trim, sort, label, do some norming,
 # etc)

 return(topic_word_vec)
}

The final function to build the topic-word table (which I creatively call build.
topicword.table()), works very similarly to the one above: start with an emp-
ty table with labeled columns, loop through all the topics, and at each step call the
previous function. But this time, the previous function is find.topic.in.all.
cols(), which in turn calls find.topic.in.one.col(), which in turn relies on
get.wordtopic.grid(), so that by the time we’ve assembled the whole thing,
we no longer need to explicitly run those earlier scripts. Instead, they will be
called only from build.topicword.table(), which therefore consolidates all
the parameters for the nested function calls, and returns a single clean output: a
topic-word table I call tw.

To finally measure distances, a fourth function cleans up tw by ensuring all
the words are in the same order for each topic, even if some words have zero
observations in the context of some (many) topics; then it isolates just the quan-
titative values (i.e., it strips out the tokens themselves and their indices within
the original MALLET table), and norms them by the number of observations
for each topic. This allows the resulting numerical matrix to be passed along to
a fifth function that calculates distances between its constituent vectors—which
can, finally, produce the topic clusters we were initially after. But only through
still another function, with its own parameters and choices to make.

The Takeaway for Digital Research in Writing
As I said earlier, I realize that was a lot of code to throw at you. But my point isn’t
to show off my sweet, sweet programming skills—in fact, I’m sure I’m expos-
ing some major inefficiencies or infelicities that a professional software engineer
would be able to diagnose and fix immediately. Nor are the details of my control
flows (if/else statements, for loops, and the like) or the specific R syntax, or calls
to pre-made functions from base or imported packages, something I’m trying to
teach. However, in the service of explaining my digital research methods, I do
think it’s important to illustrate 1) the frequent presence of control flows and 2) the
significance of each new function calling previous ones.

The Pleasurable Difficulty of Programming 179

In other words, 1) an essential aspect of programming as methodology is pre-
paring to handle and respond to changing contingencies: not to assume that the
data you’re looking at now, and the circumstances in which you’re looking at it,
are the only situation for which the code should work. For instance, beginning
programmers may be tempted to reference columns of a data table by column
number, rather than by a column name–or by assuming the columns will always
be named a certain way, rather than looping through an inferred set of names.
(I know I was.) However, these assumptions are prone to breakage, e.g., if some-
thing inserts or removes a column, such as a row index that may become shifted
by saving to Excel. Depending on the outcome, this may result in particularly
insidious silent changes, where the function compiles and runs with no explicit
errors–but with all the conclusions you would draw from its output based on a
mismatch compared to its inputs. True, there’s a risk of over-preparing for condi-
tions that never actually arise, but learning to make my code less brittle has been
key to my growth as a researcher-who-programs, from when I first started in
graduate school and continuing today.

I also wanted these examples to highlight 2) the iterative and cross-referential
nature of the process. In contrast to the output-as-endpoint default behavior of
most ready-to-use digital analytical tools, functional programming suggests that
any output can become an input. The diction surrounding functions emphasiz-
es their relationality: you call functions, pass them information, and they return
something back to you. At the same time, the sense of completion implied by that
return is only ever temporary: what is returned can be passed again. While the
examples above were constructed to show a nested set of calls—outputs passed,
as it were, straight up the ladder of scale, such that we could eventually invoke all
of them with a single call—the modular nature of the functions also means they
can stand in relation to more than one partner.

Take, for example, the table tw returned by build.topicword.table().
While I built it initially to find that distance matrix, and thus clusters of dis/
similar topics, I was also able to repurpose it for the sake of changing how
topics are labeled. As I noted earlier, by default MALLET labels topics with the
twenty words most frequently found in the context of those topics. But because
some topics are related, some words will show up high on the list of several
topics. To better differentiate the topics from one another, I adapted a technique
more often used in differentiating subcorpora of documents: Term Frequency *
Inverse Document Frequency, or TFIDF. This technique reduces the observed
occurrence of terms within each single document in proportion to the ob-
served occurrence of those terms across the whole set of documents, essentially
muting the terms that have high frequencies purely by virtue of being common
words in general. My adaptation, TFITF, substitutes Topic for Document, and
for the same reason: to highlight the terms that are more specific to individual
topics than to the corpus. As it turns out, the token frequencies needed for the
calculation, both within individual topics and across the dataset, are trivial to

180 Miller

derive from the topic-word table tw. Analytical scripts, once programmed, be-
get further analytical scripts.

Conclusions: Learning to Program, and Learning to Like It
Like all literacies, coding is social. As Vee argues, “Ultimately, all programming
is collaborative—although it is often asynchronously so. Even if they aren’t work-
ing alongside other programmers physically or online, programmers work with
languages, machines, and programming environments designed by others. They
work with libraries of procedures or codebases or frameworks programmed by
teams of other programmers” (128). This should, I hope, read as inspiring for any
of you who may be new to programming and intimidated by the idea of picking it
up: not only are you not expected to go it alone, the very software you’ll be using
to practice is infused with the traces of prior learners, not only in the languages
and the libraries but also in the copious documentation left by their designers.
Digital humanists share and discuss their code online, including through sites
like The Programming Historian (https://programminghistorian.org), which
hosts “novice-friendly, peer-reviewed tutorials that help humanists learn a wide
range of digital tools, techniques, and workflows to facilitate research and teach-
ing.” Popular languages like R, Python, and JavaScript have large and active on-
line communities, with forums like Stack Overflow (https://stackoverflow.com),
where questioners can find answers and explanations—usually without a delay,
because chances are good that someone else has had that question before, and
the answers are already online – and even vague or halting questions are often
met not with dismissal, but with probing queries that help to clarify the nature of
the problem. The barriers for entry into digital research methods are lowered not
only by software to use as-is, but also by resources (including human resources)
to help you customize how one bit of software feeds into another.

Even if you find that it’s easier to collaborate with a programmer than to write
code yourself, trying your hand at programming can facilitate that collaboration.
Knowing the kinds of data structures out there, or the way the computer already
structures the data you want to analyze or circulate, will help you describe your
project and ask your own probing queries about what the programmer can do for
you; and knowing something about functions, loops, and changeable parameters
vs. fixed values will help you parse or push back on the jargon you may get back
in response. Programming ourselves can also help us appreciate the limitations
of what code can do, and what modifications are likely to be easy or heavy lifts.

I want to be clear that I’m not advocating we ignore all the excellent digital tools
already out there, from some false sense that only code we ourselves have written
can be trusted. (On the contrary, some things, like security protocols, are probably
better left to the experts.) The choice between existing tools and custom scripts is
a false binary: as I hope I demonstrated above with my transformation of output
from MALLET, itself one of those ready-to-use tools, they often work especially

https://programminghistorian.org/
https://stackoverflow.com

The Pleasurable Difficulty of Programming 181

well in concert. And for many research questions, an existing analysis may be just
what you need. What I am saying, though, is that I have found real value in being
able to think through my inquiry by thinking through code, in at least two ways.

Programming is epistemic. Just as organizing thoughts to teach someone (wheth-
er in person or in writing) can help us bring to consciousness and further develop
what we think, so too can organizing our questions to explain them to a computer.
Except now we also have to (get to) explain the structure of our data, too—and
that helps us better grasp what we have, which, in turn, helps us formulate both
new questions and new conclusions. Writing a custom function means being aware
enough of my specific research goals and the shape of my data to speed re-entry
and replication, yet flexible enough in my assumptions to respond to changes in the
data source or the possibility of the function’s reuse in another context.

Programming is rewarding. More affectively, I find that programming as a re-
search method affords more frequent opportunities for positive reinforcement
than most other forms of writing I do. It’s still challenging, with a lot of wrong
turns, searching for help, and plenty of debugging—but it’s “pleasantly frustrat-
ing” (36), to borrow James Gee’s description of the appeal of challenging video
games: it keeps me coming back for more, with challenges that “feel hard, but
doable” (ibid). When an incremental piece of a larger analysis returns the expect-
ed result, or when a series of functions finally hand off to one another without
error after a while in the weeds of debugging, the feeling of getting it right is just
incredibly satisfying. Composing in prose can offer a similar feeling of rightness,
in the pleasure of a balanced phrase, say, or a final paragraph that satisfies, finally,
the itch of the opening. But the all-at-once-ness of writing, as Ann Berthoff put it
(86), means that so much remains in flux throughout the composing process that
it can be hard, before the ending, to know what’s really worked. Programming is
more modular, with more frequent feedback already built in.

In fact, in some ways this pleasurable difficulty is also a liability: it’s easy to feel
that there’s more tinkering to do, a more efficient approach, a follow-up question
to ask, one more level to play, and each new attempt introduces new problems to
solve. It’s important to keep aware of time. But as Gee also argues, this sensation
of earned reward is an excellent motivator for learning, and with programming,
as with any literate skill, there is always more to learn.

Works Cited
Auden, W. H. “In Memory of W.B. Yeats.” Another Time, W. H. Auden, Random

House, 1940, https://poets.org/poem/memory-w-b-yeats/.
Berthoff, Ann E. The Sense of Learning. Boynton/Cook, 1990.
Blei, David M., Andrew Y. Ng, and Michael I. Jordan. “Latent Dirichlet Allocation.”

The Journal of Machine Learning Research, vol. 3, 2003, pp. 993-1022.
Corpus of Contemporary American English (COCA), https://www.english-corpora.

org/coca/. Accessed 18 July 2020.

https://poets.org/poem/memory-w-b-yeats/
https://www.english-corpora.org/coca/
https://www.english-corpora.org/coca/

182 Miller

Craig, Todd. “‘Makin’ Somethin’ Outta Little-to-Nufin’: Racism, Revision and
Rotating Records–The Hip-Hop DJ in Composition Praxis.” Changing English,
vol. 22, no. 4, 2015, pp. 349-64.

Desmet, Christy, Ron Balthazor, Robert Cummings, Nelson Hilton, Angela Mitchell,
and Alexis Hart. “<emma>: Re-Forming Composition with XML.” Literary and
Linguistic Computing, vol. 20, no. 1, 2005, pp. 25-46, https://doi.org/10.1093/llc/fqi023.

Dighton, Desiree. “Arranging a Rhetorical Feminist Methodology: The Visual-
ization of Anti-Gentrification Rhetoric on Twitter.” Kairos: A Journal of Rhetoric,
Technology, and Pedagogy, vol. 25, no. 1, 2020, http://kairos.technorhetoric.
net/25.1/topoi/dighton/attuning-to-silences.html.

Feibush, Laura. “Gestural Listening and the Writing Center’s Virtual Boundaries.”
Praxis, vol. 15, no. 2, 2018, http://www.praxisuwc.com/feibush-152.

Fredheim, Rolf. “Visualising Structure in Topic Models.” Quantifying Memory, 2013,
http://quantifyingmemory.blogspot.com/2013/11/visualising-structure-in-top-
ic-models.html.

Gee, James Paul. “Good Video Games and Good Learning.” Phi Kappa Phi Forum,
vol. 85, no. 2, 2005, pp. 33-37.

Goldstone, Andrew. dfr-browser: Take a MALLET to Disciplinary History, http://
agoldst.github.io/dfr-browser/. Accessed 26 June 2014.

Hart-Davidson, Bill, Jeff Grabill, Mike McLeod, and Melissa Graham Meeks . “About
Eli Review.” Eli Review, https://elireview.com/about/. Accessed 29 Jan. 2021.

Kantrowitz, Dana. “The Making of a Poem, Live and Uncensored.” Acts of Revision:
A Guide for Writers, edited by Wendy Bishop, Boynton/Cook Heinemann, 2004,
pp. 134-43.

Kaufer, David, et al. DocuScope Project, http://www.cmu.edu/dietrich/english/
research-and-publications/docuscope.html. Accessed 29 Jan. 2021.

Klein, Lauren F., and Catherine D’Ignazio. Data Feminism. e-book ed., MIT
Press, 2020, http://ebookcentral.proquest.com/lib/pitt-ebooks/detail.
action?docID=6120950.

Lang, Susan, Laura Aull, and William Marcellino. A Taxonomy for Writing Analytics.
2019, pp. 13-37.

Lang, Susan, and Craig Baehr. “Data Mining: A Hybrid Methodology for Complex
and Dynamic Research.” College Composition and Communication, vol. 64, no. 1,
2012, pp. 172–94.

LeBlanc, Paul J. Writing Teachers Writing Software: Creating Our Place in the
Electronic Age. Advances in Computers and Composition on Studies Series.
e-book ed., National Council of Teachers of English, 1993, https://eric.ed.gov-
/?id=ED357369.

Lindgren, Chris, and Jim Ridolfo. “Rhetmap.Org: Composing Data for Future
Re-Use and Visualization.” PraxisWiki, 25 June 2020, http://praxis.technorhetoric.
net/tiki-index.php?page=PraxisWiki%3A_%3Arhetmap.

Lockridge, Tim. “Building Rhetorlist: A Call for Small, Meaningful Projects in
Rhetoric and Composition.” Kairos: A Journal of Rhetoric, Technology, and
Pedagogy, vol. 24, no. 2, 2020, http://kairos.technorhetoric.net/24.2/disputatio/
lockridge/index.html.

https://doi.org/10.1093/llc/fqi023
http://kairos.technorhetoric.net/25.1/topoi/dighton/attuning-to-silences.html
http://kairos.technorhetoric.net/25.1/topoi/dighton/attuning-to-silences.html
http://www.praxisuwc.com/feibush-152
http://quantifyingmemory.blogspot.com/2013/11/visualising-structure-in-topic-models.html
http://quantifyingmemory.blogspot.com/2013/11/visualising-structure-in-topic-models.html
http://agoldst.github.io/dfr-browser/
http://agoldst.github.io/dfr-browser/
https://elireview.com/about/
http://www.cmu.edu/dietrich/english/research-and-publications/docuscope.html
http://www.cmu.edu/dietrich/english/research-and-publications/docuscope.html
http://ebookcentral.proquest.com/lib/pitt-ebooks/detail.action?docID=6120950
http://ebookcentral.proquest.com/lib/pitt-ebooks/detail.action?docID=6120950
https://eric.ed.gov/?id=ED357369
https://eric.ed.gov/?id=ED357369
http://praxis.technorhetoric.net/tiki-index.php?page=PraxisWiki%3A_%3Arhetmap
http://praxis.technorhetoric.net/tiki-index.php?page=PraxisWiki%3A_%3Arhetmap
http://kairos.technorhetoric.net/24.2/disputatio/lockridge/index.html
http://kairos.technorhetoric.net/24.2/disputatio/lockridge/index.html

The Pleasurable Difficulty of Programming 183

Melançon, Lisa. USF Writes. 2020, http://myreviewers.usf.edu/research.
Mueller, Derek. Network Sense: Methods for Visualizing a Discipline. The WAC

Clearinghouse/UP of Colorado, 2017, https://doi.org/10.37514/WRI-B.2017.0124.
Miller, Benjamin. “Metaphor, writer’s block, and the legend of zelda: A link to

the writing process.” Rhetoric/Composition/Play through Video Games, edited
by Richard Colby, Mathew S. S. Johnson, and Rebekah Shulz Colby, Palgrave
Macmillan, 2013. pp. 99-111.

“NativeLand.Ca.” Native-Land.ca - Our Home on Native Land, https://native-land.ca.
Accessed 25 Jan. 2021.

Noble, Safiya Umoja. Algorithms of Oppression: Race, Gender and Power in the
Digital Age. New York UP, 2018.

Palmquist, Mike. “A Brief History of Computer Support for Writing Centers and
Writing-Across-the-Curriculum Programs.” Computers and Composition, vol. 20,
no. 4, 2003, pp. 395-413.

RStudio Team. RStudio: Integrated Development Environment for R. RStudio Inc.,
2019, http://www.rstudio.com.

Schmidt, Benjamin M. “Words Alone: Dismantling Topic Models in the Human-
ities.” Journal of Digital Humanities, vol. 2, no. 1, 2012, pp. 49-65.

Turner, Heather Noel, and Laura Gonzales. “Visualizing Translation.” Kairos: A
Journal of Rhetoric, Technology, and Pedagogy, vol. 25, no. 1, 2020, http://kairos.
technorhetoric.net/25.1/topoi/turner-gonzales/casestudy.html.

Vee, Annette. Coding Literacy: How Computer Programming Is Changing Writing.
The MIT Press, 2017.

Voyant Tools. http://voyant-tools.org. Accessed 6 June 2017.
Weingart, Scott B. “Topic Modeling for Humanists: A Guided Tour.” The Scottbot

Irregular, 25 July 2012, http://www.scottbot.net/HIAL/?p=19113.
Wresch, William. The Computer in Composition Instruction: A Writer’s Tool.

National Council of Teachers of English, 1984.

http://myreviewers.usf.edu/research
https://doi.org/10.37514/WRI-B.2017.0124
https://native-land.ca/
http://www.rstudio.com
http://kairos.technorhetoric.net/25.1/topoi/turner-gonzales/casestudy.html
http://kairos.technorhetoric.net/25.1/topoi/turner-gonzales/casestudy.html
http://voyant-tools.org/
http://www.scottbot.net/HIAL/?p=19113

