
1
O P E N S O U R C E RY
Computer Science and the Logic of Ownership

Marvin Diogenes, Andrea Lunsford, and Mark Otuteye

This chapter participates in an increasingly important and
sometimes acrimonious debate over how texts can be best circu-
lated, shared, and, when appropriate, owned. Of course, these
issues of textual and now digital ownership are not new. They
have grown up, in fact, alongside print literacy, capitalism, and
commodification, with copyright protection growing ever more
powerful: the current protection extends to life plus seventy
years for individuals or ninety-five years for corporate entities.

With the rise of the Internet and the Web, many hoped for
a new era of democratization of texts that would challenge the
power of traditional copyright: anyone could be an author; any-
one could make work available for sharing. And to some degree,
this hope has been realized, most notably in venues such as
Wikipedia and in the explosion of blogging and social network-
ing sites. Yet commercial interests are working incessantly to
control the Web, and Hollywood, the music industry, and enti-
ties such as Microsoft now concentrate their efforts on getting
Congress to protect digital works of all kinds. Democratic shar-
ing of knowledge in this atmosphere is difficult, to say the least.
Yet unofficially, people everywhere are sharing information and
trading goods, often without any citation (or payment), from
peer-to-peer music file sharing to journal article swapping to the
open-source code movement in computer science.

For this project, we found computer science to be a partic-
ularly fascinating scene for questions about textual ownership.

Open Sourcery 21

Why? First, computer science (CS) is a new, rapidly evolving
field, one in the process of defining itself in relation to tradi-
tional ideas about intellectual property, collaboration, shared
knowledge, and textual production and textual value. We were
drawn to this dynamic, and to the frontier mentality that seems
to be an important element of the developing field’s sense of
itself. Moreover, at our institution, as at many others, CS is a
large undergraduate major (among the largest at Stanford),
and CS courses have very high enrollments from other majors,
too. Thus, a significant number of our first-year composition
students will eventually have at least some contact with the
field. Another interesting element is that at our institution, as
at many others, students in CS courses account for a dispropor-
tionately high share of the total number of plagiarism cases,
and we wondered why that was the case. As these cases gener-
ally hinge on the improper appropriation of code, we found
ourselves increasingly focused on the nature of code in CS, its
complex relation to what qualifies as an idea, and its parallels
to the kinds of texts that writing teachers and humanists work
with every day.

We began our investigation by identifying eight lecturers and
senior research faculty in CS who agreed to talk with us about a
set of questions we sent them in advance. (See Appendix A to this
book’s introduction for the questions. The interview questions
were adapted by Andrea, Marvin, and Claude Reichard, direc-
tor of the writing-in-the-major program at Stanford. Claude was
also a member of the interview team, and we thank him here for
his essential contributions to that stage of this project.) These
eight interviewees teach the full range of CS courses, from first-
year through graduate level. Their work includes textbooks and
articles as well as code, and one faculty member formerly served
as co-chair of Stanford’s Judicial Affairs Review Board. One of
the informants works in the computer industry as a software
developer. In each case, we met with our colleagues in their
offices at Stanford for at least an hour, recording their remarks
and later transcribing them.

22 W H O OW N S T H I S T E X T ?

Almost immediately, we could see the commitment these
scholars had to the concept of open source (in general, the
idea that source code is available for others to use or modify;
see www.opensource.org) and to making their work available
as widely as possible and as quickly as possible. These commit-
ments lead to a tension, however, one that pits the desire to
make a free space (free both in the sense of open to all who
care to contribute and also free of charge) for publication of
cutting-edge work against the corporate, institutional desire to
control the expression of knowledge through traditional pub-
lication practices and copyright. We also began to gather infor-
mation about CS ways of doing things, of their use of boiler-
plate, conventions, and commonplaces in code that no one
owns and everyone uses. The more we talked to the respon-
dents, the more we came to know the features and special qual-
ity of their common space—what we might call the Burkean
parlor of computer science. What follows is our attempt to
hear a whole range of voices and to use them to explore issues
of textual ownership, particularly in CS, but also in other cul-
tural contexts.

PA R L O U S PA R L O R S

JZ, a CS interviewee: Here’s an issue we think about: as
the tools have become more and more sophisticated,
we have the students do more and more things that
build on the work of others. Now that work is often
public domain, standard-issue, but it creates an inter-
esting tension; we say they need to write everything
themselves, but there is a lot of code that we use ready-
made, and we need to make sure they know what they
are allowed to use, what parts they need to build inde-
pendently. Sometimes people reinvent the wheel. A
lot of that code is repetitive, not interesting, you don’t
want students to write it anyway. So you teach them to
indicate where we got this stuff from, and then build
on top of that.

Open Sourcery 23

PY, a CS interviewee: And then of course, there’s the whole
issue that on the Web everybody steals everything. It’s
extremely easy to steal stuff. I play computer games, so
I read computer game websites. And sometimes you’ll
see text just stolen, word-for-word, put on someone
else’s website. You’re just like, “Okay.” No attribution, no
nothing. It’s all hobbyist stuff, but even so, it’s clear that
. . . I don’t know if it’s a generation issue or what, but
some people think nothing of just taking text from other
people.

These computer science scholars are talking about two issues
that came up over and over again in our conversations: the
desire to keep students from having to do busywork by letting
them use another’s code as long as they give attribution, and
the recognition that many people, including lots of students,
view what’s on the Web as available for use—without citation.
(There’s also an interesting parallel and perhaps a contrast in
the attitudes toward code and word—PK notes that “on the
Web everybody steals everything,” but he seems to voice a spe-
cial ire towards those who steal text. Apparently computer sci-
ence students need to learn to acknowledge the sources of their
ready-made code, but they should already know better than to
appropriate text verbatim.) In these remarks, the interviewees
thus point up the huge change that has taken place in terms
of peer-to-peer sharing and the clash between what Lawrence
Lessig calls a “permissions culture,” which values absolute pro-
tection, and a “free culture,” which values more open shar-
ing of resources. The Record Industry Association of America
(RIAA), for example, argues strenuously that downloading a
song is tantamount to stealing a CD, while students and many
others argue for a more nuanced understanding of what con-
stitutes intellectual property (perhaps motivated by both the
immediate desire to access songs easily and by long-term ques-
tions of control and ownership of music). In Free Culture: How
Big Media Uses Technology and the Law to Lock Down Culture, Lessig
(2004) outlines four distinct types of sharing and explores the

24 W H O OW N S T H I S T E X T ?

ethics of each. In response to the RIAA, he says “If 2.6 times
the number of CDs sold were downloaded for free, yet sales rev-
enue dropped by just 6.7 percent, then there is a huge differ-
ence between downloading a song and stealing a CD” (71). If
teachers agree with Lessig’s analysis, acknowledging the claims
of businesses while seeking more complete contextual infor-
mation about their profit and loss, then we have an obligation
to be talking with our students about these issues and helping
them to articulate an informed ethic of peer-to-peer sharing.

Listening to CS scholars talk about their community and its
norms led Marvin and Andrea to spend some time thinking
about the assumptions we hold as scholars of rhetoric and writ-
ing studies, and about the various Burkean parlors in which we
find ourselves participating. How could we begin to try to fit
what the computer scientists were saying about code into what
we knew about text? Sometimes correspondences appeared;
at other times, we encountered distinct differences, or what
seemed to be brick walls blocking understanding—so much so
that we began to think not of a parlor but of a veritable carni-
val of parlors, which sometimes overlap but many times do not.
At this point, we were fortunate to engage a former student and
recent Stanford graduate to work on this essay with us. Mark
Otuteye came to Stanford a computer science major but even-
tually graduated in African and African American Studies and
English, with an emphasis on poetry. He then had an intense
internship at Google, and was in the second year of a Marshall
Fellowship at the University of Edinburgh, where he was work-
ing on poetry and computer science, during the writing of this
chapter. As one who participates in the conversations of both
humanities and computer science parlors, Mark has a special
perspective to bring to this project. He describes his introduc-
tion to Google’s parlor, and its attitudes toward intellectual prop-
erty, in this way:

Mark: My second day on the job at Google, I had my first person-
al run-in with intellectual property and computer science. I have

Open Sourcery 25

a Web page at www.markotuteye.com/google.htm that discuss-
es ten products I thought Google should develop. I had written
the page way back as a way to study for the many Google inter-
views I was to have. At the end of the page, I had a comment box
where visitors could tell me their ideas about products Google
should develop. I was proud of my comment box because it was
my first attempt at building interaction into a public site. When
he saw the site, Avichal, my mentor at Google, warned me that
the comment box produced a conflict of interest now that I
worked at Google. If someone were to submit an idea that was
similar to a product Google was already developing in-house,
that person could sue me after the product launch. “Oh,” I said.
Avichal suggested that I add some text to the site protecting me
from such a lawsuit, but I thought that I would rather just take
the box out because it would be safer. The price of interaction
on the Internet is an acute awareness of the kind of intellectu-
al property protected by patent laws. And, now that I work at a
company which must be very open internally (for innovation)
but very opaque externally (for security), I’m getting a rapid
education in the do’s and the don’ts of IP.

As Mark’s experience demonstrates, in the corporate parlor, talk
can be hazardous, ownership of ideas contested, legal remedies
pursued. As the three of us immersed ourselves in the interview
transcripts, we found ourselves hearing voices from other con-
versations about these fraught questions, voices that led us in
a number of directions. Given our non-technical backgrounds
and interests in popular culture, we began to make connections
between the questions we asked the computer scientists and our
own lived experiences, and we began to see how our interviews
related to a larger conversation about ownership and control
of ideas, texts, words, and codes. We also began to write togeth-
er on writely.com (now Googledocs), where we could generate
texts simultaneously and enter each other’s texts. This technol-
ogy led us to a free-wheeling meditation on concepts of own-
ership that we decided to weave together with the voices of

26 W H O OW N S T H I S T E X T ?

our colleagues in computer sciences and other voices we hear
around us every day.

In considering the key features of the computer science par-
lor, we sought ways to articulate and perhaps reconcile the ten-
sion between having a toolbox (the way a poet or lyricist or writ-
ing teacher might, parallel to those that new CS students are
expected to develop as part of their apprenticeship) and gen-
erating and owning an idea or code. We contemplated what it
means to be a member of community that owns things together
and what it means to create as an individual, whether the object
owned be code, a poem, a spoken-word piece, a song lyric, a
joke, or a recipe.

RM, a CS interviewee: The basic issues: can you patent an
idea for software, can you patent an algorithm, which
is just a mathematical expression of an idea on its way
to becoming a piece of software, or do you patent the
software itself? The dividing line is not well-defined. I’ve
patented ideas; for instance: I and a couple of students
had an idea of doing a similarity search. When you rep-
resent objects in a computer, you represent them as a
kind of number. You take a description of a table and
represent it by its greatest parameters so that it becomes
a sequence of numbers; you view that as a point in high-
er-dimensional space. Then the question: I have a huge
database of these objects represented, how do I find
similar objects? That becomes hard because of recursive
dimensionality; instead of comparing the parameters to
every object in the database, which is slow, you need to
come up with something more clever. We came up with
a mathematical function that takes these object descrip-
tions and collapses them into small sets of objects, so
that you compare only to the small sets. I and the two
students hold that patent—well, who holds it? Stanford
basically owns the idea, even though my name is listed
as the inventor; we have an office of technology licens-
ing, which handles the whole process. Whatever money

Open Sourcery 27

they make off it by licensing the patent to industry, they
split that up [according] to a certain formula: I’m mak-
ing this up, but, say, one third to me, one third to my
home department, the rest divided between the school
of engineering and the university. They also pay the cost
of filing the patent, which is not a small amount—ten to
thirty thousand dollars. So they decide whether to file
the patent; I cannot license it myself.

We’re very interested here in RM’s meditation on what can and
can’t be patented and the large grey area that currently exists
in this evolving field. Other interviewees made the same point,
arguing that the law is simply not yet able to distinguish effec-
tively what is of most value in CS. In any case, as RM notes, for
those working at universities, it is the institution that usually
holds the patent—though the profit gained will be shared with
the “inventor.” What’s clear is that the monetary stakes can ulti-
mately be quite high if an invention turns out to solve a prob-
lem that needs to be solved. That context of potential vast prof-
it suggests that scholars in CS must find ways to teach their stu-
dents about these complex issues and about the grey areas of
the existing law.

Mark: My grandmother used to make her own intricately spiced
stews. My grandfather used to make pots and at one point he
made a special mold that yielded pots perfect for cooking up
stews. With a pot made from this special mold, my grandmoth-
er created a stew so piping hot and tasty that no one else in her
neighborhood could figure out how she’d done it. Everyone
could see the stew and taste the stew, but no one could figure
out the recipe. It was Grandma’s signature recipe.

On top of that, no one could figure out how to get the stew
to cook in quite the same way since they didn’t have grandfa-
ther’s special stewing-pot. Both the vessel (the pot’s mold) and
the content (the stew’s recipe) were “protected” or secret from
the neighbors. This is analogous to the state of a Word docu-
ment on the Web; both the vessel (the .doc file format) and the

28 W H O OW N S T H I S T E X T ?

content (the words in the file) are protected and cannot legal-
ly be reproduced or edited without citation. This is what’s cur-
rently the norm.

Well, my Grandma valued improvisation, so she gave her
neighbors the recipe. Although Granddad didn’t tell folks how
to make their own pots by sharing his mold, he did make pots
for any neighbor that wanted one. Armed with the recipe and
the pot from Granddad, neighbors were free to make Grandma’s
stew, and innovate on top of it. The vessel (the pot’s mold) is
protected, but the content (the stew’s recipe) is free or open.
This is analogous to the state of a Word document with Creative
Commons attached.1 Given a .doc made from Microsoft Word’s
“mold,” anyone can creatively “remix” the words that I include
in the document.

Finally, my grandpa decided that it was in the best interest
of the community if he taught folks how to make their own
pots. So he shared the mold. Now both the vessel (the pot’s
mold) and the content (the stew’s recipe) were “open source”
in the community. This is analogous to an OpenOffice docu-
ment with Creative Commons attached.

JU, a CS interviewee: Writing the code is not as important as
having an idea of what code to write. The primary moti-
vation is either how to do something, an algorithm, or
“people would like it if you could do that.” The famous
case is the first spreadsheet: it was PC technology. . . .
There were spreadsheets in the 1970s that would crunch
numbers, but you needed a programmer to set them up.
Then a business person said “here’s what we need to do”
and paid a programmer $25,000 [to create a spreadsheet
program for the PC] and then made millions and mil-
lions. Some eyebrows were raised; maybe justice wasn’t
done; but a deal is a deal.

1. Creative Commons is an alternative to traditional copyright created by
Stanford law professor Lawrence Lessig. A Creative Commons license
“helps you keep your copyright while inviting certain uses of your work—
a ‘some rights reserved’ copyright.” See http://creativecommons.org.

Open Sourcery 29

Andrea: I was struck by the different system of values underly-
ing JU’s story about the first spreadsheet and Mark’s story about
his grandmother’s stew, both of which show the crucial signif-
icance of cultural context to an understanding of intellectual
property. But these stories don’t just mark a difference between
U.S. and African understandings of ownership. In fact, Mark’s
story immediately made me think of my maternal grandmother,
Rosa May Iowa Brewer Cunningham, who made a quilt for every
one of her children, grandchildren, and great-grandchildren,
up to her death at the age of 96. But she did not make these
quilts alone. Rather, she and her rural Tennessee quilting circle
worked together—they were almost always working on a quilt
or, more accurately, several at a time. Not that my grandmother
didn’t do a lot of the work of preparing alone: she was constant-
ly on the lookout for scraps of fabric she could cadge or a piece
of clothing or used flour sack she could cut up for the designs.
Mostly, she and her friends used these pieces to make a quilt
in a traditional design; the double wedding ring was one of my
granny’s favorites. But occasionally she or a friend—or a group
of friends—would create a new design to quilt to. One I know
looks a bit like a postmodern version of the log cabin quilt.

So to use Mark’s language, the quilt design is the vessel, and
the pieces put together are the content. Or is the design of the
quilt—and all the talk that takes place around the making of
each quilt—the code, and all the pieces and the slight varia-
tions stitched into each quilt are the content? In any case, no
one “owns” the quilt designs because they have been developed
through centuries of collaborative cultural practice. So those
moments of invention fall outside the code of copyright and
instead participate in the concept of open source.

Marvin: I’m the only one of the three of us who didn’t have the
opportunity to observe and learn from a grandmother, so I’ll
shift the conversation to another realm of shared cultural prac-
tices—in this case popular culture, or the sprawling family creat-
ed by mass media. Here too we can see the circulation of vessels

30 W H O OW N S T H I S T E X T ?

that become property held in common by all of those who add
content through participation in a particular culture.

The comedy troupe called The Village Idiots appeared on
Don Kirshner’s Rock Concert in the seventies. Here’s an account
of a Village Idiots skit I saw late on a Saturday night at some
point during that decade, though my own predilections certain-
ly color what I remember. I’m interested in what the skit tells us
about the form, or vessel, for a joke—in this case considering
a joke a specific way to make meaning and comment on one’s
experience of the world—and how such a vessel comes to be
invented, shared, and ultimately owned.

The skit begins with several cave-people in a cave, dressed
in animal skins. They find a cigarette lighter, a cheap one avail-
able at the counters of convenience stores. (The unapologet-
ic anachronisms in the skit are part of its indelible charm, at
least for me.) One of the cave-people flicks the lighter, getting
a flame, which terrifies all of them. The inquisitive one drops
the lighter, and all scurry away, leaving it on the cave floor. At
this point Ug walks in to the scene. Ug seems to have reached a
later stage of evolution. He calms everyone down, picks up the
lighter, and beckons them to come nearer. He flicks the light-
er on, saying “Fire good. Fire cook chicken.” (A rubber chicken
has wonderfully been included on the set.) This indeed calms
the rest of the clan, and they hold the rubber chicken over the
lighter for a moment.

Ug announces a new discovery, and asks the group to listen
carefully; they form an audience in front of him, squatting in
the dirt. He’s clearly proud of himself, preening in his animal
skin as he prepares to perform. The performance begins thus:

Ug: Knock knock.
Clan: Come in.
Ug corrects the code. “No, no, no,” he says. “Knock knock,”

he articulates, gesturing to himself. “Oo ere,” he continues, ges-
turing to the clan.

Ug: Knock knock.
Clan: Oo ere?

Open Sourcery 31

Ug: Ug.
Clan: Come in.
Exasperated but persistent, Ug corrects the code again. “No,

no, no,” he says. “Knock Knock,” he repeats, with the same ges-
tures. “Oo ere,” pointing to the clan. “Ug,” he says, pointing
again to himself. “Ug oo,” pointing to the clan.

Ug: Knock knock.
Clan: Oo ere?
Ug: Ug.
Clan: Ug oo?
Ug: Ug-ly.
He pauses, waiting for the laugh. The clan looks at him expec-

tantly, awaiting more direction. He tries to explain. “Joke,” he
says. “Joke.” “Ug-ly,” he repeats, pounding on his chest, thrown
off by the clan’s failure to appreciate the cleverness of the joke’s
form and the self-mocking payoff. “Ug-ly. Ug-ly. Ug-ly!”

The clan still doesn’t get it, but they want to please the seem-
ingly advanced Ug. “Joke,” they say, questioningly, struggling
with the concept. They pick up the previously discarded rubber
chicken. “Joke good?” they ask. “Joke cook chicken?”

For The Village Idiots—and aren’t we all members of the
troupe some of the time—code isn’t easy. First people have to
learn the boilerplate, the standard structure. Then they have to
weave in a flash of brilliance and hope everyone is dazzled. How
do writers of code learn to reconcile the tension between hav-
ing the boilerplate, the toolbox, and generating a good idea or
piece of code?

PY, a CS interviewee: It was a tic-tac-toe program, and the
students said, “Well, there’s only one way to write a tic-
tac-toe program in computer science, so of course all of
ours are exactly alike,” which is also totally false. Like,
clearly, you guys did not learn anything in this class. And
then they claimed that if they had come up with a dif-
ferent tic-tac-toe program, I would have just gone on the
Web and found another program that worked exactly
the same way theirs did. They never did get it, and they

32 W H O OW N S T H I S T E X T ?

accused me of all sorts of stuff. They wrote this nasty
letter to the Honor Code Committee. The Honor Code
Committee got really pissed off at them, and made them
write an apology to me. And to this day, I think at least
one of them still denies that they copied it. But it literally
was 100 lines of code exactly the same. And I still don’t
get what they were thinking. It’s just bizarre. I totally see
them copying, but I don’t understand how they thought
that once we brought it up they could just claim that they
didn’t copy it. It’s just bizarre.

PY’s bemusement and consternation are overt and heartfelt,
echoing his earlier response to the stolen language on the hob-
byist website discussed above. While we likely share PK’s reac-
tion to stolen words, we wonder whether the students’ act of
sharing the tic-tac-toe code is quite the same as stealing a CD, to
return to the example from the RIAA. In CS, our interviewees
told us over and over, it is the norm to use code that is out there
to save time and steps: why reinvent the wheel over and over and
over again? Yet the students aren’t supposed to do this kind of
sharing, on the theory that they need the practice of creating
code from scratch. We take the point, though.

Andrea: These stories throw into stark relief the traditional
humanities view of textual ownership, the by-now-familiar scene
of the lone writer in the garret, struggling to compose an utter-
ly unique text, marked with the author’s genius, owned out-
right, and deeply protected by the web of intellectual proper-
ty laws that have grown like kudzu during the last three-hun-
dred-plus years. This is the “author” declared dead some thirty-
five years ago, though the death announcement by humanists
such as Roland Barthes and Michel Foucault turned out to be
premature: today copyright laws are more extensive and longer-
lasting than at any time in the past, and, in fact, major content
producers (think Disney here) have appropriated the mantle of
authorship and used it to close off larger and larger areas of cre-
ative endeavor. As the power of such authorship has grown, the

Open Sourcery 33

public commons has shrunk; the Digital Millennium Copyright
Act sanctioned the entertainment industry’s appropriation of
authorship and, along the way, reduced the fair use principle
to a mere whisper. At the same time, scholars in the humani-
ties, working in a relatively new field usually called “the history
of the book,” have resuscitated the author and theorized exten-
sively on human agency and its relationship to textuality. Also
at work in reclaiming agency have been feminist and post-colo-
nial scholars.

If those in the humanities still cling to the possibility (or
necessity) of authorial power and ownership of text, they have
also moved toward a little more acceptance of collaboration.
Universities as diverse as Stanford, Ohio State, and Chicago
now all have “collaborative” humanities centers, which call for
and fund collaborative research projects. And though the sin-
gle-authored book is still the sine qua non in tenure and pro-
motion decisions within most humanities departments, collab-
oratively produced articles and books are gaining some accept-
ability. Perhaps most important, scholars in the humanities have
come to understand that very rigid and exclusionary copyright
laws actually keep them from doing their work: if everything
is protected, then how can one write criticism? Professor of
English Carol Shloss is particularly eloquent on this issue, as a
book she had worked for years to write on James Joyce’s daugh-
ter Lucia was nearly blocked by the Joyce estate, which claimed
ownership of so many of the sources that Shloss wanted to use
that her work was put in serious jeopardy. Those sources were
Shloss’s “collaborators” and she needed them desperately. As
her story shows, the same copyright that protects her “author-
ship” can be used to prevent her access to the materials she
needs to establish herself as an “author.” This is a potential con-
tradiction at the heart of what we are exploring in this essay.
With these contradictory tensions in mind, we were particularly
interested in Mark’s ideas about invention, ownership, and the
poetry he writes.

34 W H O OW N S T H I S T E X T ?

Mark: Whenever I sit down to write a new poem, I first read over
my previously written poems. I also read over the many African
American poetry books on my bookshelf to seek inspiration from
those who came before me. Because I’m both a poet and a com-
puter scientist, I brought my two passions together and wrote a
program called Heteroglossica to help automate my invention
process. Heteroglossica searches over all my previous poems,
blogs, essays, and email and presents me with start-material for
new poems. For example, if I want to write a poem protesting
the war in Iraq, I can type in “war in Iraq” and get back snippets,
sentences, and lines from my previous work that have to do with
the war in Iraq. Then I can craft that start material into a new
poem. The best thing about Heteroglossica is that it allows me to
search over multiple authors. For example, I currently have the
program configured to search Shakespeare’s plays and Tupac’s
lyrics, in addition to my own work. If I search for something like
“death,” Heteroglossica pulls lines from all three of these voic-
es and populates a text box with 20 or so of the most interest-
ing lines. Then I can edit that material into a new piece. Often,
the hardest part of writing a paper is writing against the domi-
nant thoughts and words of established authors. Heteroglossica
encourages me to think of all text as open source.

The following code from Heteroglossica creates a textbox
in Internet Explorer and puts lines from Tupac, Shakespeare,
and me into that textbox. In writing the code, I’m aware of and
sensitive to multiple audiences: the writer who will use the pro-
gram, the browser (Internet Explorer or Firefox) that will show
the Web page, and the server that will search across the three
authors. For example, this next line is for the writer who will
use the program. It lets her know that the text in the textbox
can be edited.

echo “Edit these lines into a new poem:”;
The audience for this next line is the browser. It’s the line

that creates the textbox and puts a black border around it.
echo ''<textarea name=\''main_text\'' rows=\''40\''style=\''border

:1px solid #000000; width:100%; padding:10px\''>'';

Open Sourcery 35

The audience for the next chunk of code is the server, the
computer that actually does the work and sends the results to
your browser. These lines of “for” loops and “if” statements are
supportive, boilerplate language that are written hundreds of
times in programs. Someone trained in computer science would
scan over these lines quickly looking for Heteroglossica’s active
ingredient or engine.

for ($z=0; $z<count($corpuses); $z++){
if (count($results_array) > 0 && $results_array[0] != ''''){
for ($i=0; $i<$total_results/count($corpuses);){
$k = rand(0, sizeof($results_array));
if (str_word_count($results_array[$k]) > 0){
$all_results[] = $results_array[$k].''n'';
$i++;
The line below is Heteroglossica’s “engine.”
$results = shell_exec(''grep -i -h -w $query corpus/$corpuses[$z] |

sort -b -f'');
The engine of Heteroglossica is “grep,” a pre-written function

well-known to computer science folk. Grep searches through lots
of text and finds lines that include a given term. Because I relied
on pre-written, boilerplate language for even the core function-
ality of my program, I announce to anyone reading my code that
I am more interested in designing the experience of using the
software (like interior design for a house) than in implementing
a new way to search across texts (like designing the plumbing for
a house). The logic of my code is expressive of my rhetorical sit-
uation and, to some extent, my individual personality.

Finding one’s voice isn’t just an emptying and purifying oneself of
the words of others but an adopting and embracing of filiations,
communities, and discourses. Inspiration could be called inhaling
the memory of an act never experienced. Invention, it must be
humbly admitted, does not consist in creating out of void but out
of chaos. (Jonathan Lethem “The Ecstasy of Influence,” Harper’s
Magazine, February 2007—a pastiche of text from George Dillon,
Ned Rorem, and Mary Shelley.)

36 W H O OW N S T H I S T E X T ?

Lethem’s article, which doesn’t announce its reliance on pas-
tiche until its conclusion, dramatizes in another form what
Mark’s Heteroglossica program achieves systematically with
the aid of an algorithm. The chaos Lethem describes is deeply
collaborative, as is the work in CS. Students in undergraduate
courses are encouraged to work together and to get help when
they encounter problems writing code. In introductory classes,
students are expected to write their own code, informed by dis-
cussion, and plagiarism cases generally involve students using
code written by others without citation. Our informants consis-
tently reported that plagiarism in CS is easily detected—in other
words, there’s no gray area when it comes to code. At Stanford,
a program has been developed that finds copied code, even if
the plagiarist has tried to disguise the theft by changing surface

Figure 1.0. Heteroglossica in the Firefox browser.

Open Sourcery 37

elements of the code. (One interesting element of this issue is
the idea that the way an individual writes code is very distinc-
tive.) This openness to collaboration remains constant as stu-
dents advance in the field. It is standard to ask for help; it is stan-
dard for people to work collaboratively; what’s not acceptable is
using someone else’s code without proper citation.

Except in the case of team project assignments, all the guide-
lines for collaboration we saw drew a very sharp line between
pre-code-writing activities and the actual code-writing, with col-
laboration on the latter categorically forbidden—as it was in
the tic-tac-toe example above. Presumably, if students copied
code but did cite the source, they would not be charged with
Honor Code violation, but it didn’t seem like they would get
much/any credit either. The interesting disjunction, then, is
that, in most of their coursework, collaboration is expected to
suddenly stop when students start writing, whereas that is def-
initely not the expectation/practice in industry—which most
of the students probably well know and where most of them
are headed.

Some interesting parallels with practices in the humanities
come to mind here. Stanford undergraduates enroll in a year-
long Introduction to the Humanities (IHUM) program during
their first year. They learn to engage with texts (mostly canon-
ical texts, though some IHUM courses are moving to visual
texts and, in one case, the online environment of Second Life)
through close reading, informed by two hours of lecture and
two hours of small group discussion each week. How do begin-
ning humanists acknowledge how they’re collaborating when
they compose and turn in for evaluation their single-authored
work? Students are explicitly told to cite lecture and discus-
sion when they reference them in essays and to avoid second-
ary sources, to avoid borrowing ideas. A premium is placed on
originality, a distinctive engagement with the text that doesn’t
reproduce interpretations the students have already heard. Like
the CS students, they are encouraged to work together on brain-
storming and to visit the writing center for consultations about

38 W H O OW N S T H I S T E X T ?

their drafts-in-progress: but what they write is supposed to be
theirs and theirs alone.

MJ, a CS interviewee: In the early courses, it is all individual
work. You are expected to implement everything that you
are told to implement and use tools the way you are told
to use them. In the upper-level courses, I expect them
to have a toolkit, and I tell them I don’t care where they
get it. By 143 or 148, they are expected to know how to
do those things, so the rules of 106 no longer apply. For
graphics, if I ask them to implement a particular graphics
algorithm, that’s where I draw the line; what we are learn-
ing about, you can’t copy.
Say they take 148 or 248 where they are building a graph-
ics toolkit; then they get to an upper level course and they
use that toolkit. So it keeps building. Then they get to
industry, and they have their tool kit. If I am looking for
copyright infringement, I am not going to look at the tool-
kit, which counts as shared knowledge at that point. So the
toolkit will have things they have developed and also things
that they have gotten from other sources. They will also
modify it as they go from job to job—which can get touchy.
If someone takes their toolkit plus some more meaty parts
from job A to job B, that is not right. We teach them this
in 201, which talks about social responsibility, ethics, etc.
Sometimes, though, a person thinks “I wrote this, I can
take it with me,” and that gets them into trouble.

Advanced humanities students have assembled a toolkit of inter-
pretive and analytical moves, which may be recognizable as a
kind of code but cannot be patented or owned. It’s also worth
noting that the industry of work in the humanities does not
offer the kind of financial rewards that a life in computer tech-
nology can lead to. Humanists learn to do things with words,
reaching an audience of readers; programmers learn to help
the much larger audience of consumers do myriad things with
code. While the invention practices have parallels, the contexts
and real world effects diverge dramatically.

Open Sourcery 39

Eventually, we began to get a sense of the kind of Burkean
parlor where computer programmers/coders spend their time.
It’s a parlor with whiteboards, a parlor in which visual images
and math have status equal to words. A parlor in which new-
comers learn by listening and watching. A parlor in which one
leaves the toolkit at the door, because the work of coding is
done in another room, where the hardware is kept. The par-
lor is for ideas, for play, for testing out ways of doing things
and persuading the rest of the group that one way is the best
way. The ability to discover the most effective means of getting
things done in a given situation. One might call this a rhetoric
of programming.

One feature of such a rhetoric is the strong desire in CS to
make research available as widely as possible as quickly as possi-
ble. Since knowledge is generated at such a fast pace, the tradi-
tional waiting period for publication of new work is not accept-
able in CS. Thus, as mentioned earlier, one of the tensions in
the field pits the desire to make a free space to encourage the
quick spread of new work against the traditional methods that
slow down the sharing of knowledge and subsequent synergy of
minds focusing together on a problem. Many of the informants
assert that this chills creativity.

The conflict has led many in CS to turn to conference pro-
ceedings as their main venue of publication. While journals gen-
erally want to hold the copyright on articles and may take a long
time to get the work into print, work in conference proceed-
ings appears more quickly and the copyright remains with the
authors. What seems to have sprung up, then—amazingly quick-
ly, as scholarly practices go—is a system for quickly and free-
ly disseminating work, but with agreed upon screening/review
process for making sure that work published in proceedings is
in fact cutting edge. This has in turn led to a shift in what sorts
of publications (e.g. journal articles vs. conference proceedings
and even textbooks) count for promotion and tenure, and dif-
ferences in practice in these areas between what the informants
refer to as top tier and lower tier CS programs.

40 W H O OW N S T H I S T E X T ?

Folks in CS also publish much or all of their work on their
own Web sites, contributing to the open access feel of CS, and
the premium put on free access and free exchange of ideas.
While stuff on the Web is easily stolen, such thefts are easy to
track; one informant told us about finding his work on forty
Web sites, with twenty of them not attributing the work to him.
Another informant shared this motto, “Impact, not publication;
conferences, not journals,” asserting that the perception in the
field is that journals are more likely to be publishing what is
already common knowledge, not cutting-edge. It’s important
to note that the shift to alternative means of publication does
not mean complete openness or lack of standards; the accep-
tance rate for the most prestigious conferences is 10% or less.
Bypassing the traditional journal peer review process has been
accompanied by the development of alternative conventions
of peer review—for example, the blue-ribbon committees that
select papers for each interest group at conferences.

Another interesting question in CS is the determination of
what constitutes unique or new insights. One informant cited
the “real misunderstanding of what’s unique in CS.” In particu-
lar, courts familiar with traditional ideas of copyrighted textual
material or patent law don’t know how to evaluate work in CS.
Again, there’s a gap between old IP concepts and the dynamic
developing context of CS.

What can be patented in CS? What constitutes an idea in CS?
How does one determine the difference between an idea and an
application of an idea? One informant asserted that applications
of the same idea have been patented, and that the patent grant-
ing offices simply do not know enough about CS to keep this from
happening. What’s important in CS is the idea, not the execution
or expression of it in code; as one informant put it, “Writing the
code is less important than knowing what code to write.”

Blues and jazz musicians have long been enabled by a kind of
open source culture, in which pre-existing melodic fragments and
larger musical frameworks are freely reworked. Technology has

Open Sourcery 41

only multiplied the possibilities; musicians have gained the power
to duplicate sounds literally rather than simply approximating them
through allusion. (Jonathan Lethem, “The Ecstasy of Influence,”
Harper’s Magazine, February 2007)

Marvin: There’s a British documentary from around 1988 about
Paul Simon. At one point the slow-talking, near-ponderous inter-
viewer comments that some have claimed that there can be no
great art made in rock ‘n’ roll, because the means are too limited.
He asks if Simon has felt these limits. Simon looks at him cool-
ly, at length. He answers “No, I don’t agree with that,” going on
to say that art can be made in any genre, including rock. He says
that “rock is about rhythm,” and that he can express something
lasting by finding his way to the right rhythm. Rock, like code, is a
well-defined structure. Much of the verse/chorus/bridge form is
the same in most rock songs. The guitar/bass/drums instrumen-
tation dominates. Rhyme is a near-constant. Somewhere in that
standard form is the opportunity for cool things to happen. It’s
difficult to say exactly what the cool thing is. You just know the
cool thing is there by the way the song makes you feel, by the way
the song makes you move, by what the song allows you to do.

The thoughts are there inside your head, Teach said to me
Invention is easy if you take it logically
Try these heuristics, you can call them strategies
There must be fifty ways you can discover

Don’t you sit lost in thought, just waiting for the muse
If you trust to inspiration, then the chances are you’ll lose
I’ll give you options, then it’s up to you to choose
There must be fifty ways you can discover
Fifty ways you can discover

Develop the knack, Jack
Make a new plan, Stan
Use the topoi, Roy
Just set your mind free

42 W H O OW N S T H I S T E X T ?

Try the pentad, Brad
Freewrite till it’s not bad
Idea tree, Lee
Just set your mind free

(“Fifty Ways You Can Discover,” The Composition Blues Band)

The Composition Blues Band was formed in the early 1990s,
motivated by the following (borrowed) (stolen) (reimagined)
narrative: Imagine you enter a jam session. You come late.
When you arrive, others have long preceded you, and they are
engaged in a heated jam, a jam too heated for them to pause
and tell you exactly what it is about. In fact, the jam had already
begun long before any of them got there, so that no one present
is qualified to retrace for you all the songs that had gone before.
You listen for a while, until you decide that you have caught the
tenor of the set; then you put in your oar. Someone answers with
a verse; you answer with a verse of your own; another riffs off of
your chorus; another takes a solo off the bridge, to either the
delight or dismay of the room, depending upon the quality of
the player’s chops. However, the jam is interminable. The hour
grows late, you must depart. And you do depart, with the jam
still vigorously in progress.

Lyricists and musicians learn to jam just as coders do. Bits
of code show up in the arcane CS conversation, recognizable
to cognoscenti but not to the rest of us who just want to see
what happens when we click the application. We don’t know if
what’s underneath the screen is a bass line, a rhythm, or a bit
of melody.

PY, a CS Interviewee: Yeah, so text is certainly owned, code
is certainly owned, ideas are definitely under dispute.
So there’s this idea that you can come up with ideas and
patent them. There are a lot of people in the computer
field that are very unhappy with this, but I do not believe
it has, in general, been challenged in court. I could be
totally wrong on that, I don’t really keep up with this.

Open Sourcery 43

But I do know that a lot of people do think that software
patents are immoral. I’m not entirely sure what I think.
I think there has been a tendency from the patent office
to give patents for things which should not be given pat-
ents because they really are too generic. So I think at one
point Groliers had a patent for people clicking on some-
thing. And it was almost like, “Clicking on something,
and something happens.” I don’t think it was quite that
loose, but it was generally considered to be extremely
loose, and everybody’s like, “No, this is really crummy.
How could the patent office give a patent for this?” So
that is generally under dispute. I think there is a substan-
tial community that does think that software patents are
immoral, as I said. I’m not quite sure how this is going to
play out. So that’s it for that.

KL, a CS interviewee: I think it was a grave mistake of the US
patent office to allow these algorithm patents, these busi-
ness process patents—they seem like a joke to me. Trying
to work with these standards bodies, suddenly we are
hemmed in by Cisco patenting something that is obvious,
and HP has patented something very similar, ditto SUN;
trying to produce open source software without infring-
ing on these patents is tough, and these big companies
just trade them back and forth in a way that freezes out
the startups and the little guys.

Again, we are struck by how much is at stake in CS—and at the
size of the grey area in the law. If scholars think of certain pat-
ents as “jokes” and others as so misinformed as to be immoral,
then perhaps the near future will bring these issues to a head in
ways that will resolve some of the uncertainty. Until then, how-
ever, those in CS might do well to follow Gerald Graff’s well-
known injunction to “teach the conflicts.” At least then the stu-
dents would be part of the conversation.

Appropriation has always played a key role in Dylan’s music.
The songwriter has grabbed not only from a panoply of vintage
Hollywood films but from Shakespeare and F. Scott Fitzgerald and

44 W H O OW N S T H I S T E X T ?

Junichi Saga’s Confessions of a Yakuza. He also nabbed the title of
Eric Lott’s study of minstrelsy for his 2001 album Love and Theft.
One imagines Dylan liked the general resonance of the title, in
which emotional misdemeanors stalk the sweetness of love, as they
do so often in Dylan’s songs… Dylan’s art offers a paradox: while
it famously urges us not to look back, it also encodes a knowledge
of past sources that might otherwise have little home in contem-
porary culture… Dylan’s originality and appropriations are as one.
(Jonathan Lethem, “The Ecstasy of Influence,” Harper’s Magazine,
February 2007)

I don’t want to express myself
Coalesce or confess myself
Address myself, outguess myself
Undress, assess, or duress myself
All I really want to do is get a good grade from you

I ain’t lookin’ to write too well
Cite, delight, or recite too well
Extemporize well, categorize well
Apprise, surprise, or analyze well
All I really want to do is get a good grade from you

I don’t want to describe my kin
Explore my sin or delve within
Be selective or reflective
Be directive or be effective
All I really want to do is get a good grade from you
I don’t want to explore the world
Abhor, deplore, or implore the world
Valorize, problematize
Theorize, contextualize
All I really want to do is get a good grade from you

(“All I Really Want to Do,” The Composition Blues Band)

So Lethem uses the example of Dylan, appropriator extraor-
dinaire, to arrive at the possibility that “originality and

Open Sourcery 45

appropriations” can be one. And what of less nonpareil appro-
priators, a category that includes most of the rest of us across
the board, from rhetoric/composition to computer science,
who basically seek a good grade in the eternal classroom of
life? We’re mixed up, so we remix, making do with what sur-
rounds us.

KL, a CS interviewee: In CS, people build up libraries of
routines for solving problems. You can get a sort func-
tion from a library without attributing it. When I take an
example and build on it, all the original stuff often gets
deleted, and then I might remove the copyright from it,
but only if I was sure I hadn’t left any code. More usually
I would be happy to say at the top “portions of this code
came from person X.”

Marvin: In “Getting Close to the Machine,” Ellen Ullman
(1997) offers a version of a monkish existence for comput-
er programmers in her account of her time in the field. She
shows us an environment in which the key relationship is
between the programmer and the machine, not the program-
mer and other programmers. There is no sense of community,
no conversation, no white-boarding. She leaves the field out of
a need for more consistent human interaction. She paints her
colleagues as eccentric, lacking-in-social-skills, geeky Bartlebys
who prefer not to deal with the mess of dealing with other peo-
ple. There’s just code, to them, and the uncomplicated judg-
ment of the machine.

Andrea: In contradiction to Ullman’s view, our conversations
with computer scientists suggest that they do have a sense of
community and that conversation and white-boarding are key
elements in their creative process. What leaps out at me from a
number of our interviews with them, however, is a web of con-
tradictions in terms of ownership and collaboration. Students
should work together, they say, but they must write their own
code. Open source is best—but one interviewee was offended to

46 W H O OW N S T H I S T E X T ?

find his work on another’s website, unattributed. Students can’t
cut and paste code—but doing so is a common practice in the
field. The “previous work” section of an article is important—
but almost impossible to do (remember the architecture analo-
gy here?). I want my name on my code—but lots of people are
playing fast and loose with code on the web and I believe strong-
ly in the open source movement.

MJ, a CS interviewee: In the context of source code, there is
a set of libraries you might use if you are doing Windows
applications. They are Microsoft code, and you use parts
of their code in your own code, so any Windows applica-
tion you might want to write would probably have that. If
I was looking at a piece of software and trying to decide
whether there was copyright infringement, I wouldn’t
consider things in libraries. If something was common
knowledge, a sorting algorithm that any comp-sci stu-
dent knows—professional programmers have a toolkit,
and that kit has all the most common things that they
use every day [examples]. So I wouldn’t consider that
infringement, you can get it out of any textbook. . . .
It is the nails and the screws of a building; but you still
need to make something that does a particular task with
unique features.

Andrea: At least some of this tension (it is “mine” versus “we
should all have broad and free access”) seems inevitable and,
in fact, many people in all disciplines go about their work quite
happily holding contradictory positions (usually unacknowl-
edged). A case in point: when I was invited to contribute an
essay on collaboration and intellectual property to PMLA, I
didn’t want to write a so-called single-authored essay, so I asked
my longtime collaborator and friend Lisa Ede to join me, and
we wrote the article together. Our collaborative practice over
the years has been to alternate first authorship, with Lisa’s name
first on one article or book and mine on the next, and so forth.
For the PMLA essay, it was my “turn” for first authorship, but

Open Sourcery 47

just before we sent it off, Lisa found herself really wanting to be
first author on this piece for several reasons, including the fact
that she had never published in PMLA before. I agreed at once,
though later I felt a bit awkward about this: after all, it had been
my turn. Lesson learned: old habits—and proprietary feelings
of textual ownership—die very hard. Lisa and I both hold col-
laboration and shared authorship as deeply valued practices.
But apparently we also hold on to proprietary instincts as well.
I think we’re seeing the same kind of echo of proprietary feel-
ings in some of our CS colleagues.

Certainly this essay reflects the tensions and contradictory
impulses we have tracked in our conversations with scholars in
CS. As we’ve woven their voices together with ours and those
of others such as our grandmothers, Jonathan Lethem, Paul
Simon, and The Village Idiots, we have thought about the many
ways our text—a pastiche, a pot of soup, a quilt, a tapestry—
resists any traditional sense of ownership. We have obviously,
then, been playing with these tensions ourselves, calling on oth-
ers’ words or “code,” experimenting with a kind of patch-writing
of our own, working to create a text that is not linear in the ways
of traditional academic argument, even writing in what Winston
Weathers called “crots.” What would it look like, we have asked
ourselves, to make a kind of reference or echo map of every
voice that appears in or is alluded to in this text? We envision
a veritable Charlotte’s Web of sources, a large and somewhat
unruly chorus rather than the neat trio referred to in the listing
of authors for this essay. And while the three of us take respon-
sibility for the contents of this essay, we do not claim ownership
of it except in a shared and collective way. So in the spirit of CS
commitment to the open source movement, we put this text out
there, ready for others to use it, to make of it what they will.

That is not to say, however, that we believe a student (or
anyone) should take this text, reproduce it, and claim it to be
theirs. In other words, we welcome readers to join us in swim-
ming in what we hope is a tasty soup of voices, to slalom down

48 W H O OW N S T H I S T E X T ?

the slopes of a quilted intellectual ski run, to bounce around
the various parlors described and invoked in these pages, but
we draw a line of ownership. As Lessig says, “This kind of pira-
cy is just plain wrong. It doesn’t transform the content it steals;
it doesn’t transform the market it competes in” (66). We come
away from our engagement with the CS parlor, then, wanting
our CS colleagues not only to recognize the tensions and con-
tradictions that characterize their practices and their pedagogy
but also to engage their students in sorting these contradictions
out, in aiming to work together to make explicit what should be
protected and why, what should be available for use and modi-
fication and why. And we take the same lesson for ourselves in
rhetoric and writing studies: we need to tell some of the stories
we’ve told here to our students, asking them to contribute sto-
ries and experiences of their own as a way of engaging what it
means to be an author today, what it means to have—and to
share—agency.

