RESEARCH IN

WORD PRO ESSING

lﬂewsu.erren

South Dakota School of Mines and Technology Rapld City, SD 57701 (605) 394-2481
Volume 6 Number?2 February 1988

The Professional Writer’s Workstation: !,

Software for Managing Information 2 International
Bryan Pfaffenberger Humanities

Bibliography Updat 14 Conference
ibliograp pdate .
Bradford A. Morgan in Toronto

News & Notes 18 page 18

(ainLin

ffcaiau

et

!

890 procRAM,,,, JHTEREICE

JunHeysser« intergrated cirt::i.;s.'ljrl:l\BDL a 1234 b?&d;: l:l EQB.'JLISHEHES trachH and direc
DG%M E E Fﬁ C E USH} %E:;Lilezcreqn labled functionbeys I. PEDEE FEIEH QEJZI;IEr
| RO ROGRE L. &




RESEARCH IN

WORD
PROCESSING

NEWSLETTER

Editors
Bradford A. Morgan

James M. Schwartz

Contributing
Editors
Bryan Pfaffenberger

University of Virginia

Tom Carney

University of Windsor

Terrence Erdt
Villanova University

Production Manager
Dan Doriand

Art Director
Francis Jacobs

Typesetting/Graphics
Brenda Boyer

Photography
Dave Adams

Printing
Dick Beshara

Circulation
Wendy Painter

Accounting Manager
Sondra Wagner

Research in Word Processing Newsletter.
Volume 6, Humber 2. Copyright © 1988 by the
South Dakota School of Mines and Technology.
All rights reserved. ISSN: 0748-5484. Also in-
dexed by ERIC, INSPEC, COMPUTER
LITERATURE INDEX, and SOFTWARE REVIEWS
ON FILE. The Research in Word Processing
Newsletter is published 9 times a year
(September through May) by the South Dakota
School of Mines and Technology, Rapid City,
South Dakota 57701-3995; (605)394-2481.
Postage paid at Rapid City, South Dakota.
SUBSCRIPTION: $18 per year (U.S.); $24 per
year (Canada); $27 per year (foreign). Address
all subscription inquiries and manuscripts to
the Editors, Research in Word Processing
Newsletter, SDSM&T, 501 E. St. Joseph, Rapid
City, SD 57701-3995. Please aliow 4 to 6
weeks for subscription processing. POST-
MASTER: Send address changes to RWPHN,
South Dakota School of Mines and Technology,
501 East St. Joseph, Rapid City, South Dakota
57701-3995.

2—RWPHN, Feb. ‘88

THE PROFESSIONAL WRITER’S WORKSTATION
Software for Managing Information
Bryan Pfaffenberger

Vannevar Bush, a physicist who did pioneering work on computers during the
Second World War, wrote in 1945 of the uses to which information process-
ing technology might be put in peacetime. Scientists of the future, Bush
predicted, would use an intelligent desk that he termed MEMEX. A MEMEX is
a machine in which

an individual stores all his books, records, and communications, and which is mechanized

so that it may be consulted with exceeding speed and flexibility. It is an enlarged intimate
supplement to his memory.*

More than a record keeper, MEMEX would be an aid to thought. People think,
Bush noted, using association: “'with one item in [the mind’s] grasp, it snaps
instantly to the next that is suggested by the association of thoughts.’’
MEMENX’s real value, therefore, would be to provide people with a device that
traces an associative trail through a vast library of material, with near-
instantaneous response. A MEMEX-using historian interested in the origins
of the bow and arrow, for instance, might begin with an encyclopedia article,
continue with relevant historicai works, branch into the physics of elasticity,
and end with inserting a page of her own notes into MEMEX. The MEMEX's
point wouldn’t be to replace human thought, but on the contrary, to provide
it with a tool that “‘beats the mind decisively in regard to the permanence
and clarity of the items resurrected from storage.’’?

MEMEX doesn’t yet exist in the way Bush foresaw; the job of digitizing a
scholar’s library of books is a big one by any measure, and by no means does
every expert believe it worthwhile. Books may be bulky, but they have
aesthetic qualities that MEMEX would presumably lack, and they’re portable.
And the computer power needed to process all that information, moreover,
still wouldn’t sit on a desk.

Yet the personal computer can indeed provide a MEMEX-like machine on your
desk right now. The key to creating this “‘enlarged intimate supplement to
memory’’ lies in the computer-based storage and retrieval of textual infor-
mation.

Personal computers permit scholars to store and retrieve textual infor-
mation in two ways:

Personal computer-based information storage and retrieval systems
Using information storage and retrieval software, personal computers
can provide the staging ground for individual data bases of research
notes, bibliographic citations and annotations, and other collections of
information.

Mainframe computer-based information storage and retrieval
systems Using telecommunications software, personal computers
can utilize the massive reference resources of online data base ser-
vices, which maintain millions of bibliographic citations and abstracts
in all areas of scholarship and science. The software used by these data
base services closely resembles the software available for personal
computer information management.

1 My italics. “*As We May Think,’ originally published in 1945 (Atlantic Monthly), reprinted in Perspectives on the Computer
Revolution, Zenon W, Pylyshyn, ed. (Englewood Cliffs, NJ: Prentice-Hall, 1970), p. 55.
2Ibid.




INTRODUCING TEXT-ORIENTED DATA
BASE MANAGEMENT SOFTWARE

Software designed to aid the storage and retrieval of
text is usually termed text-oriented data base
management software. Here’s a path through this
jungle of terms.

THE DATA BASE CONCEPT

A data base is nothing more mysterious than a collec-
tion of information pertinent to a particular subject.
This collection provides a base or foundation for draw-
ing conclusions or making decisions. A data base
management program, therefore, is a program for
managing (that is, storing, organizing, and retrieving)
the information in the data base.

To illustrate the basic concepts underlying data base
management, consider a box of three-by-five cards
that contain bibliographic citations and notes.

The point of keeping these cards is to store and
retrieve bibliographic information. The bibliography’s
usefulness, however, depends on whether you
remember to write down all the necessary information
on each card. If, for instance, you leave out the
publisher’s name, the citation will be next to useless
when it comes to preparing the final draft of a journal
article: you’ll have to go to the library and look it up
again. When you set up a card file of bibliographic cita-
tions, therefore, you devote some thought to how you
want to arrange the information on the cards.

Author

Title

Place of Publication
Publisher

Date of Publication
Abstract

Location

FIGURE 1. Design for a Bibliography Card

If you're especially carefui, you'll probably include a
set of headings (such as ‘‘author,’”” “‘title,’’ etc.) so
you don’t forget to write down the necessary informa-
tion on every bibliographic card. The headings,
however, may be implicit in the data base’s design and
not actually written on every card. That’s fine, so long
as you remember to include all the necessary informa-
tion. A typical heading design in shown in Figure 1. A
completed index card, containing responses to the
headings (now implicit), is shown in Figure 2.

de Silva, Lynn

Buddhism: Beliefs and Practices in Ceylon
Colombo, Sri Lanka

Wesley Press

1984

Excellent overview of Theravada Buddhism in
Sri Lanka by a sympathetic and scholarly
observer. Covered are not only the doctrinal
aspects of Buddhist belief and practice but also
the so-called ““popular’’ aspects of everyday
Buddhism, which have much in common with
neighboring Hindu customs and beliefs and rare-
ly receive treatment in works of this type.

In my personal collection.

FIGURE 2. Completed Bibliography Card

SOME BASIC TERMS

With the index card example in mind, it’'s now possible
to define the three fundamental terms of data base
management:
Data record A single unit of related information
in the data base (corresponding to a single index
card in the above example).

Data field A space for entering a particular kind
of information in a data record (corresponding,
for instance, to the “‘author’” or “abstract’’
fields in the above example).

Data record format The overall design of data
fields is repeated in every record.

LIMITATIONS OF
PRECOMPUTER DATA BASES

A card file is a true data base and can be described in
the terms just defined. But it has several limitations
that you doubtless know only too well:

There’s only one way you can file the cards. Suppose,
for instance, you're a geologist and you've
created a file of rock specimens in your personal
collection. You could file them by type of rock
(using three sections for igneous, sedimentary,
and metamorphic rocks) or by the location of
their discovery, but not both. What happens,
then, if you want a list of all the rocks in your col-
lection from the Mammoth Caves? The only way
you can retrieve the information is to search
through every single card manually.

You have to alphabetize them and search through
them by hand. This problem isn‘t overwheiming
when you’ve got only 25 or 50 cards, but what

RWPH, Feb. ‘88—3




about 200? 5007 Unless you've an assitant to
help you (rare, these days, and growing rarer),
alphabetizing all these cards could discourage
you from creating a filing system (or making any
more additions to it).

There’s only one way you can list facts from your
card files: by going through the cards manually,
extracting the facts you want, and typing them
up, an unbelievably boring job at best (or expen-
sive, if you hire a typist). And when you’ve finish-
ed, you’ve a data base that’s frozen in time. Mak-
ing any additions to it means retyping the whole
thing, doubling the tedium (or expense).

A card files stores information well—so well, in fact,
that it’s more than difficult to get it back out again. In
a bibliography sorted by author, for example, how do
you find that classic 1968 work on pesticides by an
author whose same you’ve forgotten? A good fact-
crunching system should permit you to retrieve infor-
mation just as easily as you can store it.

ADVANTAGES OF COMPUTERIZED
DATA BASE MANAGEMENT

Data base management programs dramatically cure
the retrieval problem by performing the following
tasks quickly and almost automatically: sorting,
searching, creating a view, and printing.

Sorting

Most data base management programs include a sort-
ing or ordering command that permits you to arrange
the data records in any of the following ways:

Ascending numerical order (1, 2, 3 ...)
Descending numerical order (... 3, 2, 1)
Ascending alphabetical order (a, b, c...)
Descending alphabetical order (. .. c, b, a)

Generally, you’re given a choice about which data field
you’d like to use as a key or basis for sorting the
records, and that’s a handy feature. A major limitation
of precomputer data bases is that records could be
sorted only on one key (for instance, “‘author’’ in the
bibliography example used above) and the sorting is so
tedious that one is discouraged from repeating it.
Computer data base management programs, however,
can be used to sort an extensive bibliography
repeatedly and quickly. To look only at the most recent
works, for instance, a bibliographic data base sorted
by author could be resorted in descending numerical
order using the “‘date’’ field as a key.

Some programs permit multiple key sorts, or sorts
that employ sorting keys successively to organize the
information in a data base. Suppose, for example, a
bibliographic data base is to be sorted by author and

4—RWPN, Feb. ‘88

then by date. First, the program would sort all the
records alphabetically (Abrams, Anthony, Bardwell,
etc.). Then, when it encounters more than one record
by a single author, it would sort those records by date
(Abrams 1981, Abrams 1982, Abrams 1984, etc.).

Searching

A data base management program’s search command
(sometimes called a query or select command) pro-
vides a way to find specific information within the data
base.

TYPES OF SEARCHES. Most data base management

programs provide the tools needed to do three kinds of
searches:

SIMPLE SEARCHES. The simplest search involves the
use of a single search phrase, such as ‘‘nineteenth
century communes.”” To use just this one search
phrase is to ask the computer, in effect, to find all the
records that contain the words “‘nineteenth century
communes.” Simple searches may produce more
records than you can conveniently read in one setting
if the search phrase is a general one. They’re useful,
however, when you’re trying to locate all instances of
a term or you're trying to pinpoint records pertaining
to a topic that you know to be mentioned in only a few
records (such as “‘Frederick, Harriet’’).

SEARCHES USING A LOGICAL OPERATOR. More finely
tuned search questions may be phrased using a logical
operator, such as AND, OR, or NOT. Using these
operators permits you to frame more precise (or more
inclusive) search questions than you could using sim-
ple search techniques.

MULTIPLE-OPERATOR SEARCHES. Multiple operator
searches use search questions written with two or
more logical operators.

LOGICAL OPERATORS. Some programs provide
search commands equivalent to those found in word
processing programs, which let you specify a simple
search question (a word or phrase) and show you where
it’s located in the text. Most data base management
programs, however, give you more advanced searching
functions using logical operators (sometimes called
Boolean operators after George Boole, the nineteenth-
century mathematician who invented the logic on
which these operators are based), which let you frame
even more precise search questions.

Logical operators, which are expressed as the connec-
tive AND, OR, or NOT, permit you to specify a set of
criteria about the data records you’d like to see. You
might ask, for example, for **all the records where the
field Rock Type is equal to ‘Igneous’ AND the field Site
is equal to ‘Mammoth Caves.’ *’




String quertets Nineteenth century

String quartets and Nineteenth century

FIGURE 3. Restrictive Search using the
AND Operator.

Venn diagrams help to clarify the meaning and func-
tion of logical operators. Suppose, for instance, you
have a data base of classical recordings that you've
labeled by genre (*'string quartet’’ or “‘piano trio’’) and
period (“‘eighteenth century’’ or ‘‘nineteenth
century”’). Phrasing a search question using the AND
operator produces a highly restrictive search (Figure
5): only the records that meet both criteria are re-
trieved.

String quartets Nineteenth century

L J

T
String quartets or Nineteenth century

FIGURE 4. Inclusive Search using the
OR Operator.

The OR operator is as inclusive as the AND operator is
exclusive (Figure 4): records that meet either criteria
are retrieved.

The NOT operator permits the exclusion of a subset of
the records that contain an undesirable element
(Figure 5).

ORDER OF EVALUATION. Just as it's important to
understand the order of evaluation when you‘re using

mathematical operators, so too is it important that
you understand how a data base management pro-
gram evaluates search terms. A common order of
evaluation puts terms linked with OR first; AND ex-
pressions are evaluated second. Therefore, “*dolphin
AND whale OR porpoise’’ finds all the records that
mention either “‘whale’’ or “‘porpoise’’ AND also men-
tion “‘dolphin.” That may or may not be desirable.
“'Dolphin OR porpoise AND whale’ is a completely dif-
ferent expression; it finds those records that mention
either “‘dolphin’’ or “‘porpoise’’ and also mention
“whale.”” Understanding these logical operators and
their use is basic to data base management profi-
ciency. They play a key role, too, in the searching of
online data bases.

String quartets Nineteenth century

String quertets not Nineteenth century

FIGURE 5. Exclusive Search using the
NOT Operator.

THE WITH OPERATOR. A desirable addition to a pro-
gram’s set of logical operators is the WiTH/n operator,
which lets you phrase a question of the form *‘find all
instances of TERM A that occur within n words of
TERM B.” Consider, for example, searching for
“‘economic stratification.’” One could simply enter the
two words, but most programs would search for
precise matches. Were ‘‘stratification’’ used where
“economic’’ was implicitly understood, the passage
would not be retrieved. Phrasing the search question
“'stratification WITH (20) economic’’ returns all in-
stances of “‘stratification that occur within 20 words
of “‘economic’’ in either direction. The WITH operator,
in other words, lets you put the context into the search
question.

WILD CARD SEARCHING. Wild card searching (some-
times called truncation) is a valuable feature that lets
you expand your search question’s inclusiveness. Con-
sider, for example, searching for “‘fiction.”” Without
wild cards, the program would not retrieve records
containing “‘fictions,”” ‘“‘fictional,’”” “‘fictitious,”” or
“fictive.”” To avoid this exclusion of kindred terms, you
could use AND operators (*‘Find fiction AND fictions

RWPH, Feb. '‘88—5S




AND fictional AND fictitious AND fictive’”), but this
procedure is tedious and error-prone; you might forget
to enter one or more related forms. Wild card
characters let you enter a root word such as “‘soc”’
(social, society, socialization, etc.) or ‘‘publici’’
(publicity, publicist, publicizes, etc.).

SINGLE-CHARACTER WILD CARD SYMBOLS placed at
the end of a word retrieve only those words that con-
tain the root plus one additional character. Often, the
single-character wild card symbol is a question mark.
The search term “‘education,’’ for instance, retrieves
“‘education’’ and “‘educations’’ but not “‘educational.”’

MULTICHARACTER WILD CARD SYMBOLS placed at
the end of a word retrieve ail the words that contain
the root plus any additional characters, no matter how
numerous. Often, the multicharacter wild card symbol
is an asterisk. The search term “‘education*,’’ for in-
stance, retrieves “‘education,’”” “‘educations,’’ *‘educa-
tional,”” and “‘educationally.’”’ Be careful, however, not
to truncate the root too much when you’re using the
multicharacter wild card symbol. Consider searching
for terms related to the subject of sociology. The
search term “*soc*,’”’ for instance, returns not only the
desirable sociological terms (socialization, society,
etc.) but also soccer, socks, Socrates, and many more
unrelated ones.

PARENTHETICAL EXPRESSIONS. Programs that per-
mit you to enter parentheses in search expressions let
you control the order in which operators are evaluated.
As noted above, data base management programs
follow a fixed order of precedence when evaluating
search terms; if you’re unaware of that order, you can
obtain spurious results in your search, Parentheses let
you tell the computer which expression to evaluate
first. Just as it’s good practice in mathematical
calculation to use parentheses liberally, so too is it in
writing search terms. The search question “*(porpoise
OR dolphin) AND whale’’ doesn’t need the parentheses
to work correctly, since the OR expresssion is
evaluated first with most programs, but it helps im-
mensely in clarifying the search term’s logic. In some
cases, adding the parentheses changes the search
term’s meaning. Consider, for instance, ‘*porpoise OR
(dolphin AND whale).”” In this search question, the
computer is instructed to look for those records that
contain “‘dolphin’’ together with “‘whale’’ OR records
that contain “‘porpoise.”’

QUANTITATIVE OPERATORS. Some data manage-
ment programs let you include quantitative operators,
such as LESS THAN, LESS THAN OR EQUAL TO, EQUAL
TO, GREATER THAN OR EQUAL TO, and GREATER
THAN in search questions. One could enter a search
question such as “‘Find all the records which contain a
date GREATER THAN OR EQUAL TO 1967.” It's im-

6—RWPH, Feb. ‘88

portant to remember, however, that to the computer
everything that’s represented for processing is a
number, even the letters A through 2. So long as you
understand the order in which ASCIl characters are
represented (the ASCIl collating sequence, Table 1),
you can make use of these operators even when you‘re
searching for nonnumerical material. The word *‘enor-
mous,’”” for example, is less than the word
“*minuscule,’” since it comes before “‘*minuscule’’ in
the collating sequence.

TABLE 1
THE ASCII COLLATING SEQUENCE

Control characters

Space

Punctuation characters !“#$%8&'(Q* + -/

Numbers O through 9

Punctuation characters :; 4« =»?@

Upper-case letters A through 2

Lower-case letters a through z

Additional punctuation characters [|] _'{,}

Extended characters (foreign language,
technical, graphics)

Creating a View

The result of a search operation is a subset of the data
base—that is, a view—that contains only those
records that meet the specified criteria. A view is a
way of temporarily reducing the size of a data base so
that it includes only those records in which you’re in-
terested at the moment (for instance, ‘‘string
quartets AND piano trios but NOT those of the eigh-
teenth century’’). Creating the view does not harm or
restructure the information contained in the data
base.

Printing

Most programs permit you to print out the whole data
base or a view of it, producing a report of its contents.
The better programs let you specify which fields you
want printed and give you a good degree of control
over the appearance of the report.

A desirable feature for scholarly data base manage-
ment is the ability to print the data base to an ASCil
text file (using only the standard characters as defined
by the American Standard Code for Information Inter-
change). ASCII text files can be read by word process-
ing programs, meaning that the information printed
out from the data base can be utilized directly, without
retyping, when you sit down to write about it.




DATA BASE MANAGEMENT SOFTWARE

A data base management program, in the broadest
sense of the term, is any program that:

Facilitates the storage of massive amounts of infor-
mation in a data base.

Provides commands for sorting, searching, creating
views, and printing the contents of the data base.

TEXT-ORIENTED DATA BASE MANAGEMENT

Mot all data base management programs are designed
to handle extensive amounts of text. Data base
management programs can store, organize, and
retrieve three kinds of information, and most
specialize in just one or two:

Quantitative data such as serial numbers, census
data, sales figures, part numbers.

Graphic images such as maps, diagrams, illustra-
tions of parts, X-rays, or computer-created
images.

Text such as correspondence, bibliographic cita-
tions, research notes, or the full text of scientific
or technical articles.

Most of the data base management programs on to-
day’s personal computer market are designed to deal
with quantitative data (with limited amounts of text),
and for good reason: that’s where the market is.
Businesses make many uses of quantitatively oriented
data base management programs for such matters as
maintaining inventories, updating mailing lists, and
storing customer records. Although these programs
are well suited to business applications, they tend to
place restrictions on the amount of text that can be
stored (a typical limit is about 1000 characters per
electronic “index card’’). They're of little use,
therefore, for scholars. Graphics-oriented data base
management programs may appeal greatly to those
who wish to maintain data bases of illustrations,
maps, or charts, but they’re only now becoming
available for personal computers. Our concern, there-
fore, is with text-oriented data base management pro-
grams: programs for the storage and retrieval of large
amounts of textual information.

A TYPOLOGY OF TEXT-ORIENTED
DATA BASE MANAGEMENT SOFTWARE

Text-oriented data base management programs, defin-
ed in the broadest possible sense, can be said to in-
clude word processing programs, free format informa-
tion storage and retrieval programs, text-oriented file
management programs, and idea processors.

WORD PROCESSING PROGRAMS

It’s possible to use a word processing program’s
search function for simple information management
purposes, but it's not recommended if other alter-
natives are available. You can use the word processing
program, for instance, to create a data file, and the
search function will help you find portions of the file in
which a specified word or two appears. You're given no
tools, however, for more advanced searches using
logical operators, for sorting the data base, or for
printing a selection of records.

FREE-FORMAT INFORMATION STORAGE
AND RETRIEVAL SYSTEMS

A free-format information storage and retrieval
system (FFISR) lets you see a word processing pro-
gram to set up your data base. Two kinds of FFISRs
are now available for personal computers: automatic
indexing and controlled vocabulary programs.

Automatic Indexing FFISRs

Automatic indexing FFISRs let you create a massive
data base that includes as many as several thousand
distinct text files, each created with a word processing
program. The program automatically indexes every
significant word in the whole data base, with the ex-
ception of unimportant “*noise words’’ such as article
or prepositions. As they create the index, they note
where the word is located.

Automatic indexing FFISRs represent the ultimate in
free-format data base management. No restrictions
are placed on how the material is written up; the soft-
ware can put an article, a chapter from a book, a loose-
ly organized file of research notes, and a set of
bibliographic citations and abstracts into the same
massive data base. Furthermore, no special prepara-
tion of the word processor-created manuscript file is
necessary; you simply tell the program which files you
want indexed, and away it goes.

How, then, does the program distinguish one data
record from another? It doesn’t: automatic indexing
FFISRs treat the data record concept arbitrarily. One
program (FYI 3000) considers a paragraph of text as a
unit, and shows you retrieved paragraphs. Another
(Zyindex) takes a whole disk file as a unit, and shows
you the beginning of the file in which the information
you want is stored. Pressing a button takes you to all
the screenfuls of text in that file in which the search
terms you entered are mentioned.

ADVANTAGES. Automatic indexing FFISRs are excep-
tionally easy to use. Unlike controlled vocabulary
FFISRs (see below), you don’t have to worry about
making up controlled vocabulary key words or putting

RWPN, Feb. '88—7




symbols in to demarcate the records. They operate
very rapidly, moreover, because they search an index
(rather than the actuat text). This feature makes these
programs suitable for truly massive data bases con-
taining up to 10,000 pages or more of material.

DISADVANTAGES. The chief disadvantage of the auto-
matic indexing FFISR is the full text search technique
it employs. You’'re not searching a carefully controlled
and deliberately selected set of search terms, the way
you do when you use a controlled vocabulary FFISR. On
the contrary, you‘re searching through the entire text,
and that means you’re certain to retrieve a high pro-
portion of irrelevant material. Here’s an illustration.

Let’s suppose you want to search for material on Type
| supernovas in a data base of information on super-
novas. The program will take you with supreme ac-
curacy to all instances of the term “*Type I.”” Among
those instances will be several passages that are
mainly about Type | supernovas. That'’s fine; that’s the
target. The problem is that you’ll also see material
that’s about something eise but mentions Type 1
supernovas peripherally. Notes on Type |l supernovas,
for example, will almost invariably mention Type |
supernovas, but the term may be mentioned only in
passing.

The major drawback of automatic indexing FFISRs, in
sum, is that they can tell you with supreme accuracy
what a passage contains, but they don’t give you any
way to indicate what it is about.

EXAMPLE: ZYINDEX PROFESSIONAL. (2yLab Corpora-
tion, 233 East Erie St., Chicago, IL 60611, for the IBM
Personal Computer and PC-compatibles), indexes files
created with a wide variety of word processing pro-
grams.® You can create a single data base containing
5000 disk files, each 125,000 words (500K or more)
in length. 2yIndex includes an unusually complete set
of logical operators, including OR, AND, NOT and
WITH/n. Available also are parenthetical expressions
as well as single-character and multicharacter wild
cards, extremely attractive features indeed.

The WITH/n operator is of particular value since
2ylIndex considers an entire disk file to be equivalent to
a single data record. A 10,000-word disk file, for in-
stance, might contain the words *‘business’’ and
“‘software’’ but have nothing to do with business soft-
ware; indeed, the two words could be separated by a
dozen pages. Searching for “‘business WITH/15 soft-
ware,”’ however, makes sure that the file won’t be

*As of this writing, EasyWriter I, Microsoft Word, Multimate, Palantir, Smart Word Pro-
cessor, Volswriter, Deluxe i, Wang Word Processor, Word Perfect, WordPlus PC, WordStar,
Word5tar 2000, Xywrite i, and all ASCIl-based text editors such as ProofWriter, Edix, and
S0 on.

8—RWPN, Feb. ‘88

retrieved unless the two words are closely related
somewhere in the text. What makes this feature so
desirable is that it gives you a way to overcome (if only
partially) a major drawback of automatic indexing
FFISRs, namely, their inability to label what passages
of text are about. Using the WITH/n operator gives you
some assurance that when you search, you’ll retrieve a
documernit that’s in some way about business software
rather than a completely irrelevant one that happens
to mention the two terms separated by vast gulfs of
text.

Zyindex’s prowess was amply demonstrated during
General William Westmoreland’s libel suit against CBS
in 1984 and 1985. Legal researchers used the pro-
gram to index and search daily court transcripts, which
totaled 10,000 pages at the end of the trial. The pro-
gram indexed each day’s court transcripts, 200 pages
in length or more, in about 10 minutes, giving the
lawyers by late afternoon a complete record, sear-
chable in seconds, of everything that had transpired in
the courtroom up to that point. In the legal setting,
having rapid access to massive transcripts can prove
invaluable in plotting courtroom strategy. If you need
to know just who said what about malice in the trial,
for instance, you can find out in seconds.

RECOMMENDED APPLICATIONS. Automatic indexing
FFISRs are especially recommended for creating and
searching massive textual data bases of unstructured
or loosely structured material, such as court
transcripts or chronologicaily organized field notes.
Because these programs automatically construct an
index to these data bases, they provide sophisticated
access to the information the data bases contain
without requiring tedious or costly modifications to
the information. They’re less useful for storing and
retrieving material that can be separated into distinct
data records, each of which is about something in par-
ticular (for example, a data base of notes on specific
articles).

Writers can use an automatic indexing FFISR to create
a data base of their manuscripts. Suppose, for exam-
ple, you want to check what you’ve written and
published previously on a particular subject. With your
disk-based manuscripts indexed by a FFISR, you can
load the program, type in the search terms, and in
seconds find all the passages in everything you’ve
written that pertain to search terms.

Controfied Vocabulary FFiSRs

Controlled vocabulary FFiSRs let you set up a massive
textual data base with distinct data records and give
you a way to indicate what each data record is about.
That's their prinicpal advantage—and, as will be seen,
their principal liability.




Each record is stored with a set of key words, or index
terms that you deliberately type into the record. The
program creates an index that contains only those
words (and no others); the text of the record is not in-
dexed. In other words, you control the index’s
vocabuiary.

ADVANTAGES. Like automatic indexing FFISRs, con-
trolled vocabulary FFISRs operate rapidly because
they search the index (not the actual text). They are
exceptionally well suited, therefore, for truly massive
textual data bases.

A controlled vocabulary FFISR lets you control the
vocabulary with which you’ll be searching. The only in-
formation a controlled vocabulary FFISR will retrieve
when searching is the information you have deliber-
ately placed in the key word field. Controlled
vocabulary searching is recommended when it’s vital
to reduce the retrieval of irrelevant information or to
indicate what a data record is about.

Suppose you’re setting up a data base of research
notes on supernovas. Supernovas are divided into Type
I and Type I, and a particular item in the literature is
likely to report research on one or the other. But an ar-
ticle on Type | is likely to mention Type Il peripherally.
If you’re controlling the search vocabulary and, after
reading an article, you know it’s on Type | supernovas,
you can put Type | in the key word list (but not Type II).
That way, when you’re searching for articles on Type |
supernovas, you’ll retrieve essays that are mainly
about Type | supernovas (and none that are mainly
about Type Il supernovas).

DISADVANTAGES

The chief disadvantage of controlled vocabulary
FFISRs is that information in the rest of the data
record is not indexed and cannot, therefore, be retriev-
ed if the key word list does not include any reference
to it. That can be an advantage. But it often happens
that when you're indexing you’re looking at an article
from a certain angle, even though you may not be
aware of it. Later, you might want to look at the same
literature from another angle, but you may have
neglected to index the article with that second article
in mind. It's always hard to predict in advance the dif-
ferent ways you might want to look at your notes or a
bibliographic citation in the future.

Another major disadvantage of controlled vocabulary
searching is that it's tedious to format the file with
the necessary markers and write your own key words,
Controlled vocabulary FFISRs can use files you've
created with your word processing program, but you
have to format the file first with special markers that
tell the program where data records begin and end.
Moreover, you have to think up key words for each

record and type them in. For huge information
management projects, formatting the file and sorting
all the information into distinct data records could pro-
ve prohibitively tedious.

*C

Vijaya, Samaraweera, ‘‘The Evolution of a Plural Society,”” in
K.M. de Silva (ed.), Sri Lanka: A Survey. Honolulu: Univ.
Press of Hawaii, 1977.

Abstract: This short essay well summarized the development of
the classic, strife-torn ‘‘plural society’’—a society marked by
ethnic rivalry, nationalism, and conflict—after the rise of mass
political participation in colonial Ceylon and, especially, after
the island’s independence. Particular attention is paid to the rise
of nationalist political organizations (particularly S.W.R.D.
Bandaranaike’s Sri Lanka Freedom Party [SLFP}) among the
island’s dominant ethnic population, the Sinhalese, which led to
the adoption of Sinhala as the country’s “‘sole official
language,” much to the dismay of minority Tamil speakers.

*K
PLURAL SOCIETY / ETHNICITY / ETHNIC CONFLICT /
COLONIAL PERIOD / INDEPENDENCE / TAMIL /

SINHALA / SINHALESE / BANDARANAIKE / SRI LANKA
FREEDOM PARTY / SLFP / 1958 RIOTS / LANGUAGE

*E

FIGURE 6. SuperFile Data Record

EXAMPLE: SUPERFILE. SuperFile (FYI, inc.) well il-
lustrates controlled vocabulary FFISRs. To create a
data base with SuperFile, you use your word process-
ing program to write up the material you want to store
and retrieve (say, a set of bibliographic citations and
abstracts). So that SuperFile will know how to demar-
cate the data records, you insert special signal
characters, prefaced with an asterisk, to inform the
program how to tell where one record ends and the
next one begins. Figure 6 shows a typical SuperFile en-
try, the example being drawn from a bibliographic data
base. The *C marker tells the program that a data
record begins; the *E marker tells it that the record
has ended.

The *K marker tells SuperFile that the words to follow
are key words; that is, they’re words that are especi-
ally pertinent to the content of the record. SuperFile
searches only for the words you’ve listed in this special
key word section. You may include up to 250 key
words in each key word field.

This example points up the limitations of FFISRs in
general. Suppose, for example, you wished to search
for “*nationalism,’” a term that’s relevant to this data
record. But SuperFile won’t retrieve it. You weren‘t
looking at this citation from that angle when you wrote
the key words; you were concentrating on ethnicity

RWPH, Feb. ‘88—9




and language conflict. SuperFile would tell you that no
records existed that contained information on this
topic when in fact there is at least one (and perhaps
many more).

Like automated indexing FFISRs, controlled vocabulary
FFISRs let you create truly massive textual data bases
(even when you’re using a floppy disk drive-based
system). SuperFile, for example, lets you create a
massive data base containing up to 20,000 separate
disk files, each containing millions of characters. The
data base can be distributed over a maximum of 255
floppy disks.

SuperFile gives you a powerful set of searching op-
tions. You can construct a complex, well-focused
search question using logical operators, the connec-
tors AND, OR, and NOT, to form search questions such
as “show me all the data records that mention
‘Sinhala’ AND ‘language conflict’ but NOT the ones
that mention 1958 Riots.’ */

RECOMMENDED APPLICATIONS. Controlled
vocabulary FFISRs are an excellent choice when you
want to create a large textual data base and, at the
same time, exercise conscious control over how the in-
formation in it is organized for retrieval purposes.
These programs operate rapidly and can work with
massive amounts of text. At the same time, they let
you demarcate distinct data records and indicate
precisely what the text in the records is about.

An astronomer whose research notes include entries
that are about Type | supernovas (but contain refer-
ences to Type |l supernovas), for instance, will ap-
preciate the ability to label a record as being about
Type | supernovas. Moreover, controlled vocabulary
searching can provide a way to bring about a working
version of Vannevar Bush’s MEMEX, with its perman-
ently encoded trails of association that provide illumi-
nating pathways through the material.

Bear in mind, however, the limitations of the con-
trolled vocabulary FFISR: you have to format the file
with markers and create your own key words. That’s a
lot of work. If you start with a massive amount of
material (say, 3000 pages of field notes), you might
find the job so tedious (or expensive) that you'll give
up before finishing the project. In such cases,
automatic indexing FFISRs are recommended. Con-
trolled vocabulary FFISRs are excellent choices when
you're starting a data base from scratch and plan to
add small amounts of material to it steadily (for exam-
ple, a page or two of reading notes per day).

10—RWPN, Feb. ‘88

TEXT-ORIENTED
FILE MANAGEMENT PROGRAMS

Text-oriented file management software (FMS)
represents the next step up in complexity and power
from free-format information retrieval systems. The
major advantage of a text-oriented FMS is that you
can combine the virtues of controlled vocabulary and
full text searching without suffering either one’s
liabilities.

Text-oriented file management programs do not re-
quire you to create a data base with your word pro-
cessing program. Instead, they have their own word
processing functions (which are rudimentary, but suffi-
cient for their intended purposes) built in. The most
important difference is that a file management pro-
gram lets you design your own data record format, us-
ing a pattern of named data fields (such as, for in-
stance, “‘author,’”” “citation,’”” and “‘annotation’’) that
appears on each data record. You can sort the records
on any of the fields you’ve defined (you can sort your
bibliography, for example, by author, by date, or by cali
number). When you’re printing, you don’t have to print
the whole record; you can print only the fields you want
printed (leaving out, for instance, the abstracts in a
bibliographic data base so that only the citations are
printed). The information contained in the data records
is, in short, highly structured, and that gives you the
ability to maniputate it in many ways.

CITATION Vijaya, Samaraweera, ‘“The Evolution of a Plural
Society,’” in .M. de Silva (ed.), Sri Lanka: A

Survey. Honolulu: Univ. Press of Hawaii, 1977.

ABSTRACT This short essay well summarizes the development
of the classic, strife-torn ‘‘plural society’’—a
society marked by ethnic rivalry, nationalism, and
conflict—after the rise of mass political
participation in colonial Ceylon and, especially,
after the island’s independence. Particular
attention is paid to the rise of nationalist political
organizations (particularly S.W.R.D.
Bandaranaike’s Sri Lanka Freedom Party {[SLFP})
among the island’s dominant ethnic population,
the Sinhalese, which led to the adoption of Sinhala
as the country’s ‘*sole official language,”” much to
the dismay of minority Tamil speakers.

KEY WORDS PLURAL SOCIETY, ETHNICITY, ETHNIC
CONFLICT, COLONIAL PERIOD,
INDEPENDENCE, TAMIL, SINHALA,
SINHALESE, BANDARANAIKE, SRI LANKA
FREEDOM PARTY, SLFP, 1958 RIOTS,
LANGUAGE

FIGURE 7. FMS Data Record

Advantages

To illustrate the advantages of text-oriented FMS, con-
sider setting up a data base with a field for a record’s
full text and a second field for controlled vocabulary
key words (Figure 7).




-

Suppose you're interested in nationalism, but only as
it pertains to Sri Lanka. To retrieve relevant records,
you could search in the following way: “‘Find all the
records in which the field ABSTRACT contains NATION-
ALISM and the field KEY WORDS contains SRI
LANKA.”’ Note that searching this way returns all the
records that mention nationalism in the full text of the
abstract, as long as they also mention Sri Lanka in the
key word field. What you've done, in essence, is
pointed the search with great accuracy toward precise-
ly those records which are about Sri Lanka and men-
tion nationalism in any way.

To illustrate the great virtues of this search flexibility
with another example, let us return to Type | and Type
Il supernovas. A record that’s about Type | supernovas
will have that term in its key word list. You can pin-
point your search, then, to just those articles that are
about Type | supernovas without worrying about
retrieving irrelevant articles that mention Type | super-
novas only peripherally (but are really about something
else). At the same time, you can also search the full
text of the abstracts for concepts or terms you may
have neglected to index. You can search, for example,
for all the records which are about Type | supernovas
but which also mention the Magellanic Clouds in the
abstract field. And if you want to see every record that
mentions Type | supernovas, however peripherally, you
can do a full text search of the abstract field.

Disadvantages

The major disadvantages of text-oriented file manage-
ment programs are their slow speed and limited data
base size.

Because most of these programs search the full text
of each and every record, rather than an index, opera-
tion becomes increasingly sluggish in direct proportion
to the number of records in the data base. A good
FFISR can search 100 data records per second; a file
management program may take from one to several
minutes to do the same job.

These programs usually limit the size of the data base
to disk capacity. If you’re using a hard disk, of course,
you’ll have enough disk space to create a large data
base, but the slow operation of the FMS then becomes
a problem.

Example: Notebook I

(Pro/Tem Software, 814 Tolman Drive, Stanford, CA
94305, available for the IBM PC and PC-compatible
computers; Notebook 1, an earlier version, is available
for most computers.) Notebook |l is a text-oriented in-
formation management system that’s in a class by
itself. Designed for scholars and scholarly applica-
tions, Notebook Il is a sophisticated file management
program that’s specifically designed for the storage
and retrieval of text.

In its IBM PC version, Notebook permits you to enter
up to 30,000 characters in each of up to 50 data
fields per record, and gives you the full panoply of FMS
utilities (searching, logical operators, sorting, selec-
tion, and printing). The program is exceptionally easy
to use. Scholars will appreciate Notebook Ii’s ability to
make full use of the IBM PC’s extended charcter set,
which includes many foreign languages and scientific
symbols. Notebook Il is of special interest to scholars
because it's designed to work with a particularly in-
genious Pro/Tem product called Bibliography.

Example: Microsoft File

(Microsoft Corporation, 16011 N.E. 36th Way, Red-
mond, WA 98073, for the Apple Macintosh) Microsoft
File can be viewed as a text-oriented file management
program. Up to 1023 data fields may be defined for
each data record, and each data field may contain up
to 32,767 characters. All the foreign language and
scientific symbols available with Mac’s Option key are
available to Microsoft File. In addition to its excellent
text-handling features, Microsoft File permits the user
to establish numerical fields and provides tools for per-
forming computations on them (however, no built-in
statistical functions are provided).

Recommended Applications

Because of their slow speed and data base size limita-
tions, text-oriented file management programs aren‘t
well suited to storing and retrieving massive textual
data bases containing thousands of pages of text.
They’re better suited to storing and retrieving infor-
mation from smaller data bases, such as a scholar’s
annotated bibliography of several hundred citations
and abstracts.

IDEA PROCESSING PROGRAMS

To include idea processing programs such as Think-
Tank under the rubric *“*data base management soft-
ware’’ is to stretch that term’s definition. Idea pro-
cessing programs, are, in essence, aids for creating an
outline, and they were originally intended for writing
applications. Nevertheless, for certain purposes such
programs can indeed be viewed as tools that can
facilitate the storage and retrieval of information, and
they’re considered here from that angle.

What makes certain idea processing programs suit-
able for data management purposes is their provision
of text storage feature. The programs that inciude this
feature let you store, under the headings of an outline,
free-format entries that can contain tens of thousands
of characters. One could create, therefore, an idea
processor-based data management system that
organizes free-format textual entries under a complex
set of headings and subheadings.

RWPH, Feb. ‘88—11




+  Qutline for Research Monograph
Introduction

The Problem

The Method

The Data

Results

Interpretation

Conclusions

+++4++++

FIGURE 8. ThinkTank Outline

Example: ThinkTank

(Living Videotext, Inc.) is the first outline-oriented file
management program, and it well exemplifies the
strengths (and limitations) of this type of software for
data base management. You can use ThinkTank to
create a complex outline, which could, for instance,
represent a plan for a research monograph (Figure 8).

The plus signs (+) in front of the headings indicate
that they precede a subordinate heading (or headings)
that may be visible or hidden from view. The hidden, or
collapsed, headings may be made visible if you wish
(Figure 9).

+  QOutline for Research Monograph
+ Introduction
+  The Problem
+  Survey of the Literature
+  Defining the Problem
+  Statement of Hypothesis
The Method
The Data
Results
Interpretation
Conclusions

+++ ++

FIGURE 9. Expanded Heading

ThinkTank permits you to place up to 20,000
characters (or 900 lines) of free-format text under any
subheading of the outline. The program, therefore,
isn’t merely an outlining program; it’s also useful for
storing massive amounts of text (up to the limits im-
posed by your computer’s disk drive). In contrast to
free-format or file management programs, however,
this information is sorted under hierarchically orga-
nized headings and subheadings (Figure 10). You may
restructure the framework of headings and
subheadings if you wish.

12—RWPHN, Feb. ‘88

Advantages

Managing data with an idea processing program makes
good sense when the information to be stored must be
subsumed under a complex, hierarchically organized
structure. An excellent example is a data base of lec-
ture notes, handouts, and other material for a course.
You’re not stuck with the structure you’ve chosen
because the program gives you tools for reorganizing
it.

+ Outline for Research Monograph

+ Introduction

+ The Problem

+ Survey of the Literature
+ Jenkins 1956

Rodale 1959
Peterson and Roberts 1962
Radkin 1968
Chen 1975

+ 4+ + +

Chen, Li, ‘““Urban Development in
the Third World,”” Urban Affairs
and Redevelopment 3:5 (September,
197), pp. 23-28.

Chen directly addresses the theories
of Peterson and Roberts (1962) and
Radkin (1968) and presents new
evidence that contradicts their
predictions. Rates of internal
migration and seasonal migration in
Third World cities, Chen argues,
cannot be squared with their
theories. Chen introduces a new
model which represents a more
accurate and sensitive estimator of
urban development processes
considering several factors connected
with migration.

+ Defining the Problem
+ Statement of Hypothesis
The Method
The Data
Results
Interpretation
Conclusions

+ 4+ + + +

FIGURE 10. Free-Format Textual Entry

Disadvantages

Because idea processing programs such as ThinkTank
do not include sophisticated search features such as
logical operators, they make it difficult to search for
information stored in the text areas, which are usually
hidden from view. The best guide to the contents of
the text areas is the headings themselves. When the
information to be stored cannot be readily categorized
by the framework of headings and subheadings, idea
processors are likely to impede rather than assist data




base management. For that reason, an idea piocess
ing program works well for storing and organizing
research notes under the organizationa!l framework of
a planned writing project, as in the above erample, But
it would be much less useful for creating a general
data base of research notes in which the overall stric-
ture is of little prominence or concern. For that pur-
pose, free-format information storage and retrieval
systems excel,

Recommended Applications

Because the hierarchical organization of the stored
material is so pronounced, idea processing programs
are at their best for storing and retrieving data when
the overall structure of the material is known in ad-
vance. This isn’t to deny, of course, that the structure
can be changed with the program’s restructuring com-
mands. Even so, the software’s limited searching
capabilities make other programs such as FFISRs or
FMS more appealing when the overail structure to be
imposed on the material is vague or temporary.

Where that structure is clear, however, idea process-
ing programs can work beautifully as data base
management programs. Consider for example, a
biolgist who wishes to store her research riotes under
Linnaean classifications. A major heading for the order
Cetacea, for example, could be expanded to reveal the
suborders Mysticeti and Denticete; expanding Den-
ticete could reveal further biological classifications or
a series of articles listed in alphabetical order by
author’s last name.

INFORMATION
MANAGEMENT HORIZONS

What you've just learned about personal computer
data base management programs will pave the way for
your exploration of online data base services. These
services let you connect your computer, via telephone
lines, to huge mainframe computers whose auxiliary
memories contain as many as 75 million bibliographic
citations and abstracts. After you’'ve made the con-
nection, your computer becomes, in essence, a control
terminal of the service’s computer,

The software these services use is fully comprehensi-
ble in the terms established here. In essence, this
software-—the software you’ll actually use after you
connect with the service—is much like the text-
oriented file management software discussed above
and exempiified by the program Notebook. The
bibliographic data records have distinct data fields,
and you can search them by using controlied
vocabulary techniques (there’s a separate key word
field) or full-text searching of the abstracts. The
logical operators (OR, AND, MOT, and WITH), wild
cards (single-character or multicharacter), and paren-

thetical expressions work just the same way. The only
difference is that, unlike personal computer-based
FMS, the mainframe software creates a FFISR-like in-
dex and searches it instead of the individual records.
The result is extremely fast retrieval time even with
data bases containing a million or more records.

Onlirie data base services provide a significant part of
the personal computer’'s MEMEX-like capabilities, and
you'll surely want to explore them. For now, learning
how to use a personal computer-based data base
management program provides excellent training and
preparation for going online. Remember that when
you're doing online searching you’re being charged for
every second you’re connected, so online searching
isn't a good way to become familiar with the in-
tricacies of searching with logical operators. It’s far
better to practice with a personal computer-based
data base management program first.

RESOURCES

On creating a data base with a word processing program, see Dara
Pearlman, *‘Managing Data with a Word Processor,’’ Popular Com-
puting (Feb. 1984), pp. 160]163, and her “'Throw Out Your Index
Cards,” PC: The Independent Guide to IBM Personal Computers 4:4
(Feb. 19, 1985), pp. 331-332. For extensive illustration, see
Chapter 6 of my Macintosh for College Students (Berkeley: Sybex
Computer Books, 1984).

For a readable overview of theoretical issues in the design of data
base management systems, see Michael Lesk, ‘*Computer Software
for Information Mangement,”” Scientific American 251:3 (Sept.
1984), pp. 162-173. A standard technical work on data base soft-
ware technology for mainframes and minicomputers is C.J. Date, An
Introduction to Data Base Systems: Vol. 1. 3rd ed. (Reading, MA:
Addispn-Wesley, 1981), and An Introduction to Data Base Systems:
Vol. Il (Reading, MA: Addison-Wesley, 1983). Less technical is
Date’s lucid and readable work on data base management from the
user’s viewpoint, Database: A Primer (Reading, MA: Addison-
Wesley, 1984).

For do-it-yourselfers, a fine introduction to data file programming
(suitalbe for any computer which runs BASIC, not just the IBM PQ) is
Alan Simpson, Data File Programming on Your IBM PC (Berkeley:
Sybex Computer Books, 1984).

An excellent automatic indexing FFISR is FYI 3000 (FYI, Inc., P.O.
Box 26481, Austin, TX 78755, for the IBM Personal Computer and
PC-compatibles). See Hunter McCleary, “'FY] 3000: The Unconven-
tional Database Management Program,’”” Database 7:4 (Dec.
1984), pp. 49-53.

[Ed. Note: Portions of the above appeared in Contributing Editor
Bryan Pfaffenberger’s The Schoiar’s Personal Computing Hand-
book: A Personal Guide, published by Little Brown and Company.]

éryan, an anthropologist, teaches in the College of Engineering and
Applied Sciernice at the University of Virginia in Charlottesville.

RWPHN, Feb. '‘88—13




	rwpn6.2--01
	rwpn6.2--02
	rwpn6.2--03
	rwpn6.2--04
	rwpn6.2--05
	rwpn6.2--06
	rwpn6.2--07
	rwpn6.2--08
	rwpn6.2--09
	rwpn6.2--10
	rwpn6.2--11
	rwpn6.2--12
	rwpn6.2--13

