Double Helix, Vol 2, 2014

Techniques for Capturing Critical Thinking in the Creation and Composition
of Advanced Mathematical Knowledge

Peter Charles Samuels
Birmingham City University

1. Introduction

1.1 Research into Advanced Mathematical Behaviour

Advanced mathematical thinking (Tall, 1991) and tertiary level mathematics education research
(Selden & Selden, 2002) have only recently become established research fields. Research into the
working practices of mathematicians is still rare. In a recent article, | observed that

unlike most other subjects, mathematical activity resides almost entirely within the
cognitive processes of a mathematics practitioner and is therefore difficult to
characterise. Despite recent interest, the nature of advanced mathematical activity
remains something of a black box to educational researchers (Samuels, 2012, p. 1).

Apart from major mathematical discoveries, such as Wiles’ experience of proving Fermat’s Last
Theorem (Singh, 1997), mathematicians’ rich and profound experiences of doing advanced
mathematics have generally lacked a language and vehicle of expression. In approximately the last
150 years, the discourse of the mathematics research community has focused almost entirely upon
the product of mathematical activity rather than its process (Science Festival Foundation, 2013;
Solomon & O’Neill, 1998), leading me to express my sense of alienation from the product of my
mathematical labour (Samuels, 1993). Assuming | am not alone, | hope that the data capturing
techniques presented in this paper will provide mathematicians with a variety of means to share
what they are thinking as they create and communicate advanced mathematics.

1.2 Purpose, Perspective and Outline

The purpose of this paper is to present new techniques for capturing critical thinking in the process
of creating and writing up advanced mathematics. The aim is to complement, rather than challenge,
the standard, product-orientated genre of academic mathematical discourse. The proposed
techniques presented here are based neither on the standard data capturing techniques used in
previous research into mathematical behaviour nor on a requirement that mathematicians have the
additional identity and capability of being researchers in mathematical behaviour. Furthermore,
these techniques do not assume that the research will be initiated by mathematical behavioural
researchers observing mathematicians and deriving insight into their thinking processes from these
observations which have an inherent risk of being invalid (which will be discussed later). Instead,
they provide a means for mathematicians to capture and communicate rich data into their actual
working practices.

Four techniques are introduced with examples from my own research into analytical fluid
mechanics: plan writing, concept mapping, activity transcripts, and annotated drafts and
transcripts. Each of these techniques is fairly easy to use and unobtrusive as they do not involve
another researcher being present, or capturing data in a potentially distracting manner, or
mathematicians spending additional time participating in contrived activities outside of their
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normal working practices. They also cover different stages in the process of creating mathematics
and composing mathematical writing, as discussed below.

Given that | am a research mathematician, and one of the goals of this paper is to promote
a division of labour between research mathematicians and researchers in mathematical behaviour,
| have not attempted to analyse my own critical thinking from my mathematical data as this would
contradict this division of labour. It would also create the additional problems of a lack of
objectivity and a dual identity, setting an unhelpful precedent which | do not wish others
necessarily to follow. The absence of analysis of the critical thinking in the examples of the
proposed techniques provided might be viewed as a weakness of the paper in validating their merits
relative to existing techniques. However, a more general evaluation of the proposed techniques is
provided in Sections 3 and 4.

As a concession to this possible perceived weakness, the examples of the proposed
techniques have been selected because they appear to contain critical thinking and provide
different perspectives on the process of creating and writing up the same piece of advanced
mathematics which other behavioural researchers may wish to analyse further. The examples are
therefore provided more for the purpose of promoting the creation of a corpus of mathematical
process data and encouraging future analysis, as discussed in Section 6, rather than being of direct
interest to the average Double Helix reader.

This paper builds on the ideas | presented in a recent opinion piece (Samuels, 2012). In
Section 2, the issue of critical thinking in science and mathematics is explored. In Section 3,
existing techniques for capturing data on advanced mathematical behaviour are critiqued. In
Section 4, in order to provide a framework for discussing these techniques, the relationship
between the process of creating mathematics and the writing process is explored. Each proposed
technique is then presented in turn in Section 5 with examples from my doctoral research into
analytical fluid mechanics (Samuels, 2000). Finally, in Section 6, these proposed techniques are
compared with existing techniques used by mathematical behavioural researchers, their utility is
evaluated, and the possibility of creating a corpus of similar behavioural data is discussed.

2. Critical Thinking in Science and Mathematics

The development of critical thinking is widely accepted as being important within academia, but
there is considerable disagreement over its definition. In an extensive study of university academic
staffs’ views on the subject, Paul et al. (1997) found that “few have had any in-depth exposure to
the research on the concept and most have only a vague understanding of what it is and what is
involved in bringing it successfully into instruction.” Moon (2008) argued for a definition which
emphasises utility to learners. Her literature review identified a variety of approaches: some, such
as Gillett (2014), defined critical thinking as the application of Bloom’s (1956) taxonomy
(understanding, analysis, synthesis and evaluation) to an area of knowledge; others, such as Fisher
(2001), emphasised the application of logic to critiques and arguments; others, such as Cottrell
(2011), viewed critical thinking in terms of a collection of component skills; others have taken an
overview perspective. Of these overview perspectives, perhaps the best recognised is that of Ennis
(1989) who defined critical thinking as “reasonable and reflective thinking focused on deciding
what to believe or do” (p. 4).

Ennis (1989) also characterised different views on whether critical thinking differs
according to the subject area to which it is applied, leading to different implications for the way it
should be taught. Firstly, the epistemological subject specificity view holds that good thinking has
different forms in different subject areas. The National Council for Excellence in Critical Thinking
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(2013) appears to adhere to this view, having stated that

instruction in all subject domains should result in the progressive disciplining of
the mind with respect to the capacity and disposition to think critically within that
domain. Hence, instruction in science should lead to disciplined scientific thinking;
instruction in mathematics should lead to disciplined mathematical thinking; ...and
in a parallel manner in every discipline and domain of learning.

Secondly, the conceptual subject specificity view argues that generic critical thinking is impossible
because thinking is always applied to something. Bailin (2002) supported this view within the
context of science education, encouraging its application through “focusing on the tasks, problems
and issues in the science curriculum which require or prompt critical thinking” (p. 370). However,
common to both these views is the requirement to understand the nature of knowledge within a
discipline before critical thinking within it can be understood.

The nature of mathematical knowledge can be seen as a special case of scientific
knowledge due to mathematics’ position as “queen and servant of the sciences” (Bell, 1951): queen
in the sense of being the abstraction of the concepts, objects and procedures used in other areas of
science, and servant in the sense that all science disciplines use mathematics to present knowledge.
There is considerable debate amongst philosophers on the nature of scientific knowledge (Eflin et
al., 1999), which includes issues such as the unity of science, the demarcation of science from
other subjects and whether scientific paradigms are consistent or contradictory. Regarding the
nature of learning activities, Pask (1976) differentiated physical sciences from the arts and social
sciences. He defined the former as operational style, which Ramsden (1997) summarised as “the
manipulation of concepts and objects within the subject-matter domain, the emphasis on
procedure-building, rules, methods, and details” (p. 209). Pask defined the latter as comprehension
style, which Ramsden (1997) summarised as “the description and interpretation of the relations
between topics in a more general way” (p. 209). His differentiation implies there is much less
scope for analysing, evaluating and interpreting ideas within physical sciences.

In general terms, there are fundamental distinctions between a mathematical assertion that
is universally accepted being true, a formal argument demonstrating that it is true and a reader of
such an argument both intuitively “seeing” it is true and being convinced it is true by the argument
provided. A simple example is Pythagoras’ Theorem, which is universally accepted as true but a
proof is seldom provided (see http://www.mathscentre.ac.uk/video/1090/ for an intuitive
argument).

The nature of mathematical knowledge has been the subject of extensive philosophical
debate for over a hundred years. Its foundation is largely attributed to Frege (Kitcher & Aspray,
1988). He also led the debate from which the three main positions for viewing mathematical
knowledge were established: logicism, which views mathematics as a logical system, the main
work being Whitehead and Russell’s Principia Mathematica (1910-1913); formalism, which
views mathematics in terms of provably consistent formal systems, the main protagonist being
Hilbert (1926), and which led to the Bourbaki Programme of standard exposition of mathematics
(Mashaal, 2006); and intutionism, developed by Brouwer (1948), which asserts that the
fundamental properties of mathematical objects should be based on intuition rather than logic.
According to Kitcher and Aspray (1988), these three main positions still dominate the argument
today.

However, each of these positions shares the belief that mathematical knowledge is a formal
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system of deduction whose axioms and rules can be precisely stated and followed. One construct
is built upon another with formal proofs provided for any assertions. Results presented are either
true or false and should be critically evaluated in these absolute, objective terms of validity
(Goldin, 2003). Two famous examples are Russell’s letter to Frege just before his major work on
mathematical foundations (Frege, 1903) went to press, which completely undermined it by
identifying a logical flaw in his argument, known as Russell’s Paradox (Hersh, 1997, p. 148), and
Wiles’ proof of Fermat’s Last Theorem (Singh, 1997), which was held up for over a year by a
technical difficulty due to one minor oversight in his original (incorrect) proof.

Furthermore, there are additional forms of critical thinking in mathematics apart from the
formal validation of mathematical arguments. Schoenfeld (1992) emphasised the need to develop
effective mathematical thinking in the context of problem solving and metacognition. His approach
aligns closely with the epistemological subject specificity view and the “deciding what to do
[next]” (p. 4) aspect of Ennis’ (1989) definition of critical thinking. Schoenfeld (1992, p. 356)
reported an experiment in which he compared the ability of college and high school students with
that of staff mathematicians in solving non-standard problems. He found the latter spent much
more time in analysis, exploration and planning, leading to much higher success levels from which
he concluded that staff mathematicians were more adept at mathematical thinking in this context.

The focus of critical thinking in this article is on its use in the creation of advanced
mathematical knowledge. From the epistemological subject specificity view, the main recognised
work on critical thinking in this area is by the Advanced Mathematical Thinking Working Group
of the International Group for the Psychology of Mathematics (Tall, 1991). In particular, in
agreement with the observation made above, Tall (1991) recognised the importance of precise
definitions and logical proof in advanced mathematical thinking, noting that “the move from
elementary to advanced mathematical thinking involves a significant transition: that from
describing to defining, from convincing to proving in a logical manner based on these definitions”
(p. 20). Furthermore, consistent with the example of Pythagoras’ Theorem above, Dreyfus (1991)
stressed the importance of being able to move between an intuitive understanding of an assertion
and a formal proof that it is true. The purpose of this paper is to present techniques which have the
potential to shed light on what mathematicians are thinking as they create and write up advanced
mathematics.

3. Evaluation of Existing Data Capture Techniques

There are major problems with the use of traditional behavioural research techniques to capture
data concerning advanced mathematical behaviour. Nardi et al.’s (2005) observational study of
undergraduate mathematics tutorials is perhaps the most relevant, although the level of
mathematics is slightly lower than that discussed in this paper. Observations are, however, time-
consuming to analyse and the completed analysis may not reflect what the students were actually
thinking at the time, especially if they contributed little verbally, since most mathematical creative
activity takes place in silence.

Other studies into the behaviour of working mathematicians have involved researchers
conducting interviews (Burton, 2001) and focus groups (lannone & Nardi, 2005) with
mathematicians analysing mathematical texts (Burton & Morgan, 2000), video recordings of
mathematical problem solving behaviour (Schoenfeld, 1985) or mathematicians providing
personal reflections into their own behaviour (Poincaré, 1908). However, the use of each of these
approaches for capturing advanced mathematical behaviour is problematic: most rely on
mathematicians providing rationalisations of past behaviour which are subject to criticism of post-
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rationalisation and dissonance from thinking during the activity (Nisbett & Wilson, 1977).
Schoenfeld’s (1985) video study of the mathematical problem solving process is very insightful,
but this technique is not applicable to capturing advanced mathematical behaviour. Burton and
Morgan’s (2000) textual analysis was applied to completed texts, representing the product of
mathematical behaviour, rather than its process. In summary, these techniques are either not
applicable to capturing the behaviour of research mathematicians or inappropriate for capturing
their processes of creating and writing up advanced mathematics—see Table 1.

Table 1 Comparison of Existing Behavioural Research Techniques for Investigating Advanced
Mathematical Behaviour

Data Applicable to Captures the Captures the
capturing Example research mathematical mathematical
technique mathematicians creative process writing process
. (Nardi et al.,
Observation 2005) No No No
Interview (Burton, 2001) | Yes No No
(lannone &
Focus group Nardi, 2005) Yes No No
Textual (Burton &
analysis Morgan, 2000) Yes No No
Video (Schoenfeld, .
analysis 1992) No Possibly No
Reflection (Poincaré, 1908) | Yes Not in detail No

The possibility of an alternative approach appears to be difficult. The complexity of
analysing mathematical behavioural data provided by interviews and textual analysis, and the
underlying complexity of the phenomena they describe, may have discouraged researchers in
mathematics behaviour from seeking to obtain more authentic data due to the belief that the
analysis of such data might be even more resource intensive and complex. For example, the direct
observation of mathematicians doing mathematics would be intrusive and might require a long
period of time. Another underlying assumption is that research into the working practices of
mathematicians must be initiated by researchers into mathematics behaviour; mathematicians are
generally treated as research subjects according to the classical positivist research paradigm.

Iannone and Nardi’s (2005) co-researcher approach is an exception. They adopted an
interpretive paradigm, treating mathematicians more equally by exploring the conditions under
which mutually effective collaboration between mathematicians, such as those they enlisted, and
researchers in mathematics education, such as themselves, might be achieved. However, their use
of prepared data sets and focus groups is very different from the one proposed here. On the whole,
researchers in mathematical behaviour initiate research studies and generally consider using only
the data capturing techniques with which they are familiar from other contexts.

One possible solution would be for research mathematicians to carry out ethnographic
studies into their own behaviour. However, very few research mathematicians have either the
capability or the interest to carry out an objective analysis into their own research processes. Such
an approach has been described by Anderson (2006) as analytical autoethnography, in which the
researcher is “a full member in the research group or setting, visible as such a member in the
researcher’s published texts” (p. 375) (in this case, the mathematics research community) and
“committed to an analytic research agenda focused on improving theoretical understandings of
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broader social phenomena” (p. 375) (in this case, the mathematical behaviour research
community).

Two examples of autoethnographic studies are Tall’s (1980) account and reflections of his
discovery in infinitesimal calculus and Chick’s (1998) application of the Structure of the Observed
Learning Outcome taxonomy (Biggs & Collis, 1982) to her doctoral research in abstract algebra.
Whilst both studies provide interesting insights into the process of creating mathematical
knowledge, the lack of other similar or follow-on studies in the last 35 years illustrates the
difficulty and rarity of this combined identity approach. The single identity approach of a
mathematician as a transcript provider is easier for mathematicians to achieve and provides more
detailed data. Therefore, it has a greater potential to provide more data of a richer quality, enabling
researchers in mathematics behaviour to gain greater insight into the thought processes of
mathematicians as they create mathematics.

4. The Mathematical Creative Process and the Writing Process

4.1 Process Models

Poincaré (1908) proposed a four stage model of mathematical creativity based on introspections
on his own mathematical behaviour: preparation—conscious work on a problem, incubation—
unconscious work, illumination—a sudden gestalt insight, and verification—another phase of
conscious work to shape the insight (hereafter, his model is referred to as Poincaré’s Gestalt Model,
as a gestalt insight is its distinctive feature). At the time, mathematicians disagreed with Poincare’s
approach, as it was seen as a departure from rigour, leading in part to the Bourbaki Programme;
however, this view is no longer mainstream (Senechal, 1998).

Poincaré’s model is now widely accepted as the starting point for describing the creative
process in general (Lubart, 2001). Hadamard’s (1945) reflections on mathematical creativity are
in close agreement with Poincaré’s, whereas Ervynck (1991) suggested a three-stage model: a
preliminary technical stage; algorithmic activity; and creative (conceptual, constructive) activity.
However, a recent detailed study of the working practices of mathematicians by Sriraman (2004)
showed strong agreement with Poincaré’s Gestalt Model and Hadamard rather than Ervynck’s
model. Therefore Poincaré’s Gestalt Model is adopted within this paper.

The writing process has also been characterised by a model containing sub-processes.
Based on a literature review of previous studies, Humes (1983) proposed four such sub-processes:
planning—generating and organising content and setting goals; translating—transforming
meaning from thought into words; reviewing—Ilooking back to assess whether what has been
written captures the original sense intended; and revising—in which the writer can do anything
from changing his/her mind, leading to major reformulations, to making minor edits to his/her text.
These sub-processes are generally enacted in the order given here but can overlap and be revisited
later during the writing process, as illustrated in Figure 1. As Humes’ (1983) model is widely
accepted, it has also been adopted within this paper (and is referred to hereafter as Humes’ Sub-
processes Model).

4.2 Interrelationship

Of the limited research into the relationship between the creation of mathematics and the creation
of mathematical texts, perhaps most significant is that by Solomon and O’Neill (1998), who
explored the relationship between mathematics and writing by considering the historical approach
taken by mathematicians when the academic writing style was not dominant within the discourse
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of the professional mathematical .

community. In particular, they Planning ;

investigated the writing style used by :

Hamilton (1843) in his discovery of Tanslahng :>
quaternions,  reporting how he { Reviewing ?
demonstrated fluency in switching

between an informal narrative style b Revising

and a formal journalistic style when
communicating his findings in the Figure 1. Humes’ Sub-processes Model of writing com-
appropriate social or institutional Position.

context. They argued for the

importance of teaching a correct mathematical writing style rather than a reliance solely upon
narrative genres for those who may feel excluded from the dominant mathematical discourse.
However, a more important conclusion from their research for the current study is that the narrative
writing style has almost entirely been lost by mathematicians due to the dominance of the standard,
product-orientated mathematical style in the contemporary academic discourse, to the detriment
of research into the working behaviour of mathematicians.

The approach taken by most authors of books on mathematical writing agrees with
Solomon and O’Neill’s (1998) recommendation to teach a correct mathematical writing style. For
example, Vivaldi (2013) emphasised how to produce correct content according to the mathematical
writing style. In addition, some authors provide limited contextualised advice on the mathematical
writing process (Maurer, 2010). However, Aitchison and Lee (2006) dispute the adequacy of an
emphasis solely on the mechanics of writing to account for the complexities of doctoral students’
writing, let alone the writing by professional researchers. Therefore, there remain underlying
tensions among advice on a formal mathematical writing style for communicating results, writing
process models to improve mathematical writing and a narrative style for communicating the
mathematical process.

Despite these unresolved tensions, a number of observations can still be made into the
connection between Poincaré’s Gestalt Model of mathematical creativity and Humes’ Sub-
processes Model of writing composition. Firstly, at least since the early Nineteenth Century
(Caranfa, 2006), writing has been seen as a creative process. Therefore, due to the accepted general
applicability of Poincaré’s Gestalt Model, it would be expected that all stages of this model be
present within the writing

composition process to some extent. Prepa- | Incu- | lllumin- Verification
Secondly, Crowley (1977) ration bation ation

observed similarities between some of i . A i

the stages of Poincaré’s Gestalt Model Planning’/ . )

and the sub-processes of Humes’ - o :

model: preparation and incubation are Translating ' )

similar to planning; illumination is ' L4 |

similar to translating; and verification Reviewing ) |

is similar to revising and reviewing— c Revisin

see Figure 2. However, writing at the 9

verification stage of the mathematical Figure 2. Similarities between Pointcaré’s Gestalt Model and

creative process is more for personal o> Sub-processes Model when applied to writing
understanding than for planned ¢omposition.
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communication with the mathematical community. Only if this activity has been successful and
the mathematician decides it is sufficiently important to be communicated to the wider community
will a second phase of translating (this time of the mathematical writing) be required.

Thirdly, and for the same reason as the second point above, the writing itself cannot usually
be planned until the mathematical discovery has been completed, verified and reflected upon.
Perhaps the most famous example of this is Wiles’ communication of his proof of Fermat’s Last
Theorem (Singh, 1997), comprising his original lectures at Cambridge University; the slight
problem he identified with his own argument; his subsequent over-coming of this problem and his
publishing of a mathematical paper communicating his verified findings (Wiles, 1995). Therefore,
in most circumstances, the stages of the mathematical creative process follow the sub-processes of
the writing process. Figure 3 maps the four data capturing techniques proposed in this paper onto
the mathematical creative process and the mathematical writing process. Table 2 provides more
information on this comparison. These techniques will now be introduced and explored in turn
through examples from my own doctoral research (Samuels, 2000). As already stated, the purpose
of presenting these examples is to illustrate the techniques, rather than to analyse the meaning or
significance of their content. However, they have been chosen carefully to exemplify potentially
interesting critical thinking.

Mathematical discovery Mathematical writing
A A

Prepa | Incu- |lllumin| Verif- Planning

-ration | bation | -ation |ication
QTransIating

Reviewing

Revising
wFr)ilﬁ: Activity transcript wF:iIfi‘:
9 9 Proposed
Concept map Concept map | data
capturing
Annotated :
draft and techniques
transcript | |

Figure 3. Mapping of proposed data capturing techniques onto the mathematical creativity and writing
process.
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Table 2 Applicability of Proposed Data Capturing Techniques to the Mathematical Creative and
Writing Processes

Corresponding stage | COrresponding sub-
. Static or P gstag process(es) of the Reference(s) to
Technique - of the mathematical . - .
dynamic creative process mathematical writing | similar work
P process
. . . . (Polya, 1945;
Plan writing | Static Preparation Planning Pugalee, 2001)
Notes made during
Activity - activity coqld be A_cc_ount of activity (Craig, 2011; Tall,
: Dynamic | written during similar to translating
transcript . . . 1980)
preparation or but in a narrative style
verification
(Bolte, 1999;
. - Kaufman, 2012;
map |ioncﬁbation |?eviewig 2008; Mac Lane,
g 1986; Ojima,
2006)
Annotated
draft and Dynamic Preparation Reviewing (Eliot, 1971)
transcript

5. Data Capturing Techniques

5.1 Plan Writing

Plan writing is used here to describe a data capturing technique by which a mathematician
elaborates on a plan to create a certain mathematical result. An example is provided in Figure 4.
The printed text formed part of a communication to my supervisor in which | provided him with
an overview of my plan to create a particular proof of a result on the application of catastrophe
theory (Poston & Stewart, 1978) to nonlinear wave theory (Whitham, 1974). The handwritten
notes were for my own benefit after 1 met with my supervisor. The other pages of this
communication are provided in Appendix A. This plan relates more to creating the mathematical
content. Figure 5 provides an overview plan of the same process which | produced for my own
benefit. It relates to both the mathematical creativity process (Level 1) and the mathematical
composition process (Level 2). Figures 4 and 5 illustrate how different forms of plan are created
for different purposes. Plan writing relates to the preparation stage in the mathematical creative
process and the planning stage in the mathematical composition process. It is a static technique in
the sense that it captures current thinking rather than changes in thinking.

Very little has been written about capturing written mathematical plans as a data capturing
technique. Polya (1945) viewed planning as a vital step in mathematical problem solving. His
description of this process is similar to the first stage in Poincaré’s Gestalt model of mathematical
creativity. Pugalee (2001) used written mathematical plans as a technique to investigate Year 9
students’ metacognition in mathematical problem solving. However, neither of these authors nor
those who have built on their work, such as Schoenfeld (1985), appears to have promoted plan
writing as a technique for mathematicians to communicate their advanced mathematical behaviour.
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The fourth step is to apply these theorems to the unfolding function derived in step two.
Firstly, we must show that it is genuinely an unfolding of a smooth function f.

Secondly, we are aiming at inducing the standard unfolding of the cusp catastrophe:
V_(a,b)(x) = 1/4 x4 + 1/2 ax2 + bx

So we want to apply these theorems with k=4.

Thirdly, we need to show that the smooth function f already derived is 4-determinate by
applying theorem 8.4.

Theorem 8.7 should allow us to prove the required result, but we also want to construct a
sequence of unfoldings from the original unfolding F to V_(a,b). Theorem 8.6 should tell us
whether F itself is versal. If so, we have the corollary which should lead to the existential form
in theorem 8.7. The only difficulty then is constructing the basis for Del_k(f) and inducing an
unfolding written in terms of this basis.
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Figure 4. Example of plan writing.
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Figure 5. Second example of plan writing.

5.2 Activity Transcripts

A mathematical activity transcript is a detailed account of a specific mathematical experience. It
combines notes written at the time of the activity with an account of what the mathematician was
thinking when he/she created these notes. It may also include other forms of writing, such as an
introduction to the context of the experience and a reflection on the experience. Figures 6a to 6d
provide four extracts from an activity transcript relating to non-linear wave theory: an introduction,
written 8 days after the activity; notes written during the activity; an account of the activity, also
written 8 days after it occurred; and a review or reflection, written about 3 weeks later. The whole
activity transcript is provided in Appendix B. Figures 6b and 6¢ include a mistake which was
discovered only during the reflection, in Figure 6d. This has been included to illustrate how actual
mathematical activity sometimes contains mistakes which may be corrected at a later stage. Due
to the multiple nature of its content, an activity transcript relates to the incubation, illumination
and verification stages in the mathematical creative process. It is a dynamic technique, as the
critical thinking of the mathematician is seen to change through the transcript. In essence, it
captures the process of creating mathematics.

11
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9.2 Background

(Written after 8 days, with minor edits later.)

My general aim had been to explicitly characterise regions to the solution of the one-
dimensional unsteady wave equation by the number of solutions the wave equation
has for each point in terms of derivatives of the initial wave speed. The standard
solution technique is to plot lines on which the solution is constant whose slope is
related to the wave speed, known as charcteristic curves. The generally accepted
result is that when the initial wave speed has an inflection point, is decreasing with
respect to the base line and has positive third derivative then a breaking point will
occur at which the solution surface initially starts to overturn. After this point, it
is possible to locally obtain two curves called caustics which mark the boundary to
the region in which the solution is triple-valued. Outside this region the solution
locally remains single-valued.

Figure 6a. Background statement relating to the example of mathematical activity.
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Figure 6b. Extract from the mathematical transcript.
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I noted that the integral contribution vanishes as it is evaluated when n = E.

0
Combining (8) with (10) allowed me to state that the integral -E?é becomes infinite
F4

when:

- [1=dVEr)t €z o _
co(éB)t [ D) ]/ﬂ(ﬁ n)cy” (€ +n)dn =0 (11)

I wanted to rearrange this equation to make # the subject. In order to simplify the
working I decided to introduce an intermediate variable by defining:

€ . Y
| €=nea+min =10 (12)
0
(The introduction of the £2 term was to ensure that the integral I (€) was of the

right order.)
Using this definition, I inferred that:

Eleo(en) +E1(6)] = —(%Sézf(é) (13)
Cy B

Figure 6¢. Narrative for the mathematical transcript.

9.4 Review

(Notes made about three weeks later and written up after two and a half months.)

In trying to find a more explicit relationship between f and &, I found I had made
a mistake in equation (13): the term co(£g) in the first bracket should have been
c{gl)(f,g). My mistake became evident when I tried to calculate the sign of . Al-
though I could have confirmed this with a dimensional analysis, I decided to make
completely sure by going back to the parametric definition of the caustic curves. I
applied the partial derivative method to the original characteristic equation as in
the above analysis. This was an improvement over the previous method I had used
which had involved calculating the equations of the caustics using neighbouring
characteristics.

This gave me the symmetrical relationship:

C((Jl)(fB + g) — Cgl)(gB) (17)
es”(€8)cs (€8 + )

Figure 6d. Reflection on the mathematical activity.

t =

13
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Compared with Tall’s (1980) account of his discovery of a new mathematical concept,
activity transcripts are more detailed and more integrated as a single document describing a single
event. Consistent with Figure 6d, he recounted making many small errors during his discovery
process. Regarding the danger of post-rationalisation, he stated, “I am very suspicious of
mathematicians who recall how they did research without taking careful notes at the time” (p. 24).
The detailed original notes form the basis of activity transcripts, increase the accuracy of the post
rationalisations made in the accounts of the experiences and reduce the applicability of Nisbett and
Wilson’s (1977) criticisms of the accuracy of verbal reports on mental processes.

Craig (2011) recently used journals of problem solving activities with first year
mathematics undergraduates. The students were asked to write explanatory paragraphs of their
problem solving behaviour. These were analysed using Waywood’s (1992) classification of
student mathematical journal entries: recounting—reporting what happened, summarising—
codifying and organising content, and dialogue—showing an interaction between ideas. Craig
found a strong correlation between the journal entries and Waywood’s classification scheme. She
also deliberately included an example containing a mistake. The approach taken in Figures 6a to
6d are a combination of recounting (in the transcript notes themselves and the account) and
dialogue (in the reflection).

In the wider scientific context, a famous example of an activity transcript is Faraday’s diary
(1932-1936), containing transcripts of his original notes whilst retaining his original illustrations.
Parts of these have been analysed by researchers. For example, Gooding (1990) devised a formal
language for investigating the creative process by which Faraday discovered the electric motor.
However, the scientific discovery process is slightly different from the mathematical one as it
generally requires constructing apparatus and carrying out experiments in order to test hypotheses.
Furthermore, West (1992) asserted that Faraday’s particular approach may be attributable to his
being dyslexic and thus not generalizable to an understanding of the nature of scientific creativity.

5.3 Concept Maps
According to Novak and Carias (2008), concept maps are

graphical tools for organizing and representing knowledge. They include concepts,
usually enclosed in circles or boxes of some type, and relationships between
concepts indicated by a connecting line linking two concepts. Words on the line,
referred to as linking words or linking phrases, specify the relationship between the
two concepts. (p. 1)

However, according to Gaines and Shaw (1995), the term concept map is used to “encompass a
wide range of diagrammatic knowledge representations” (p. 334); they went on to provide a more
formal definition of a concept map which is beyond the scope of this paper. In any case, the practice
of using concept maps is often different from formal attempts to define what they are.

In addition to Novak and Canas’ (2008) statement above, the linking lines between
concepts are sometimes directed using arrows. Groups of concepts are sometimes identified by
drawing a shape around them, such as a rectangle, and also labelled. The naming of a link between
two concepts can be interpreted formally as a predicated proposition of the form
LinkName(Conceptl, Concept2). The physical proximity of concepts can also be seen as implying
an association between two concepts (Simone et al., 2001).

Concept maps are easy to create but are often dismissed by academics with a “traditional
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dualistic orientation” (Hung, D., Looi, C.-K., & Koh, T.-S., 2004, p. 193) as lacking objective
interpretation. However, as Gaines and Shaw (1995) observed, all knowledge is subject to
interpretation by a reference community, and “there is an exact parallel between natural language
and visual language—the abstract grammatical structure and their expressions in a medium take
on meaning only through the practices of a community of discourse” (p. 335). However, this is
disputed by Hoey (2005), who claimed that corpora are “central to a proper understanding of
discourses as a whole” (p. 150). The subject of corpora is revisited in Section 6 below.

Whilst concept maps are used for different purposes, the purpose relevant to this paper is
the visual representation and communication of tacit knowledge from experts about their domains
of expertise. Examples of concept maps from my PhD thesis (Samuels, 2000) are provided in
Appendix C. An example is not provided in the main paper, as they do not relate to the same piece
of mathematics as the other three examples of the techniques presented in this section. They differ
in degree of structure and breadth of knowledge content. All these maps were created for my own
benefit to aid the representation and communication of mathematical knowledge. They can be
created at the preparation and incubation stage of mathematical creativity because reflection on
conceptual relationships could be seen as a precursor to a new mathematical discovery, such as
Kaufman’s (2012) anthropological presentation of the discovery of a new duality transform.
Generally, a concept map is a static data capturing technique. It can also be used in the planning,
translating and reviewing sub-processes of the composition process (see Figure 11 below).

Concept maps are common in secondary education, especially in science (Novak & Cafias,
2008). Bolte (1999) suggested they could be used as a complementary assessment technique in
undergraduate mathematics. More recently, Lavigne et al. (2008) used them as a research tool to
investigate students’ mental representations of inferential statistics. Mac Lane (1986) used concept
maps to describe the interconnection between concepts in different areas of mathematics.
Otherwise, the use of concept maps by research mathematicians is rare. Concept maps also relate
to the writing process, especially pre-writing (Ojima, 2006).

The Structure of the Observed Learning Outcome (SOLO) taxonomy provides a knowledge
representation similar to concept maps, known as response structures. Within this taxonomy,
concepts are labelled in different types: data or cues, concepts or processes, abstract concepts or
abstract processes, and responses. The structures created are more dynamic and represent the way
an individual’s conceptual understanding develops over time. Chick (1998) applied the SOLO
taxonomy to her doctoral research in abstract algebra. However, concept maps are promoted here
because they are perceived as being more practical for research mathematicians to understand and
use.

5.4 Annotated Drafts and Transcripts
The final data capturing technique introduced in this paper is an annotated draft and transcript. The
idea for this technique was derived from the version of T.S. Eliot’s (1971) poem The Waste Land
edited by his first wife, who made facsimile copies of the pages of the original draft, numbered the
lines and then transcribed both the draft and the different annotations on the opposite page. My
approach is based on annotations | made when re-reading extracts of my own internal reports. |
have numbered the lines and transcribed all the comments but not the original text (as this was
already typed). Each page of the extract begins with a list of the variables introduced thereon in
order to provide a measure of the working memory load required by the reader.

An example page of an extract is given in Figure 7 with its transcript given in Figure 8
(note the emotional reflection written next to Lines 1 to 4 and the “seeing” in the comment next to
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Line 17). The whole of this extract and its transcript are provided in Appendix D (note: “Report
4” to which this extract refers is (Samuels, 1989)). Whilst annotating drafts is not a new idea, their
use in capturing critical thinking in the composition of advanced mathematics is believed to be
new. As with Eliot’s (1971) facsimile and transcript edition of his draft, of particular relevance is
the social context in which the drafts are created.

EIFS Pz, AV, G, VoA )
Kl P33 - 38 - o

LI This function clearly obeys

PO WP

192 F(0:a,b) =0 . N . ‘ ‘ (2.51)
T . o G \.a\/ c'r’u:—."
- e 1
N Tt
-5 Also, the equation ) i b (e K
\ {t e, \J
,/\-\, AP s L\'
. gF U
[ Fx(x:a.b) =0 - (2.52)

LY will analogously lead to the equation of a surface in (a,b,x) space.

L Following the ideas of catastrophe theory Y([&M we attempt to show

i+ that F(x,a,b) forms the first of a sequence of unfoldings which may be
] & induced from each other, ending up with the standard form of the

| £{ universal unfolding of 4x* (which is the cusp catastrophe unfolding

e t:l..mction, A+3).
Al The first step is to show that STERA
L2 f(x) = F(x:0,0) (2.53)

Ay ]
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=75 —:" o S ':—\\"-1 ri&“t Cian Cos (00T LA
Ly [4]). T | N g
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Figure 7. Example annotated draft.
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Exract 7 page 5

Report 4 page 38

Top: Ays, f(z),a.,7", 7%, ()

L1-L4: I am excited (‘and motivated’ inserted) about trying to understand this argument but also
daunted by the complexity

L6, ([4]): brackets removed
L7, unfoldings: underlined
L7: GENERAL METHOD
L9, universal unfolding: underlined
L9-L10, cusp catastrophe unfolding function: underlined
L11, first step: underlined
Li1: STEP 1
(F — G) crossed out
[ strongly 4-determinate
L14: P125
L13-L14: I am using [4] concurrently
L15, theorem 8.1: P134

L17, z°: I think the theorem states that lhs should be a homogeneous polynomialin z of degree (“f’
crossed out) 5
Oh, I see, homogeneous only refers to all order 5 when there are several variables.

L17, 2°_,a,a": has to be of order > 2

L18: ticked

Figure 8. Example transcript of annotated draft.

The annotated draft and transcript technique is dynamic and clearly fits in with the writing
sub-process of reviewing. However, it could also be appropriate for the preparation stage in the
mathematical creativity process if the draft text needs to be improved substantially. This was
certainly the case with my reflections on my internal reports. Part of the final proof relating to the
extract provided in Figures 7 and 8 is given in Figure 9. The whole of the deductive form of the
proof is provided in Appendix E. The content of the final version of the proof looks very different
from that in the internal report.

Whilst the publication of results within internal departmental reports may not be so
common, it is usual for mathematical ideas and results to be communicated first in an informal or
semi-formal setting before they are submitted to and published in journal articles. Therefore, an
annotated draft and transcript approach may be widely applicable to mathematical creativity and
writing.

6. Discussion

The purpose of this paper has been to present four practical techniques which enable
mathematicians to capture and communicate their critical thinking processes when creating and
composing advanced mathematical knowledge. The use of these techniques requires a shift in
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Firstly, we must show that F' is genuinely an unfolding of a smooth function f.

Lemma 1.5.1 F is well defined.

Proof

Let

(@) = Foole) = /0 U”(y _ z)?g(z)dz] dy (1.41)

0

by using (1.17). We must prove that f is smooth. From (1.16),

r = &

t

96 = 3 €+

Il

Therefore f is smooth provided c(()a) is smooth. But 1 and ¢ are smooth from (1.2). Therefore ¢ is

smooth. Therefore cg?') is smooth.

Secondly, according to Definition 1.4.16, we must show that F, ;(x) is defined in a region about (0, 0).
This is again guaranteed by the smooth nature of ¢y and the definitions of g and h in (1.16) which go

up to make the function F,p(z).
The lemma is therefore complete. O

Secondly, as we are aiming at inducing the standard unfolding of the cusp catastrophe, we want to

apply these theorems with k = 4.

Thirdly, we need to show that the smooth function f already derived is strongly 4-determinate by

applying Theorem 1.4.1.

Lemma 1.5.2 f is strongly 4-determinate.

Proof

From Theorem 1.4.1, f is strongly 4-determinate < Va € R Jag,ay, ..., as € R such that:

5
2

azd = |:§:_2 ur;r"] 73 (%) (1.42)

Figure 9. Extract from final published version of proof.
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perception of the role of mathematicians from research subject or co-researcher in research
initiated by a behavioural researcher to transcript provider. Furthermore, their use is not in
opposition to traditional mathematical creative activity and the standard, product-orientated
mathematical writing genre but rather they can work alongside them, enabling mathematicians to
express their thinking processes and recapture the narrative writing style that was common in a
previous age (Solomon & O’Neill, 1998).

All four of these techniques are relatively easy to use, making them practical and accessible
to mathematicians. As the information is coming directly from the mathematicians and relates to
their actual creative and writing processes, these techniques are more appropriate and have a
greater potential to provide accurate data on critical thinking than the traditional data capturing
techniques used by behavioural researchers outlined in Section 3. The two dynamic techniques,
activity transcripts and annotated drafts and transcripts, emphasise the importance of capturing
detail, potentially leading to accurate post-rationalisations. In particular, activity transcripts are
promoted because they have the potential to capture detailed thought processes during the
mathematical creative process.

This paper has explored the nature of critical thinking in an advanced mathematical
context. Critical thinking in mathematics is fundamentally good mathematical thinking, which
primarily is being able to create and identify mathematically correct arguments. Whilst it has not
been the purpose of this paper to analyse the critical thinking within the examples of the proposed
techniques, the correction of a mistake in Figures 6b, 6¢ and 6d illustrates it. The examples
provided also illustrate some of the other forms of critical thinking in mathematics discussed in
Section 3, such as deciding what to do next when creating mathematics, “seeing” results intuitively
and planning both mathematical activity and mathematical writing.

A theme common to the examples of these techniques provided is the importance of the
social context in which they have been created. Therefore, in order to encourage other
mathematicians to engage socially with these techniques, creating a corpus of advanced
mathematical process data which mathematical behavioural researchers can study is proposed. The
figures in this paper and the supplementary data supplied in the appendices are my initial
contribution to such a corpus. Such an approach would be similar to that taken in the Digital
Variants corpus (Bjork & Holmquist, 1998) (http://www.digitalvariants.org/) which enables living
authors to present texts created at different stages of the writing process. Wolska et al. (2004)
created a corpus of tutorial dialogs of people with different levels of mathematical ability proving
theorems in basic set theory. The data provided with this paper, especially the process of creating
a deductive proof applying catastrophe theory to nonlinear wave theory, could form a joint research
study with mathematical behavioural researchers. Finally, at the meta level, Figure 10 below is a
hybrid of a writing plan and a concept map | produced during the process of creating this paper.
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Other Pages of First Example of a Mathematical Proof Plan

Used®

Ph.D. Volume II Narrative:
Some Mathematical Proofs of Properties of the Weak End of Shock Waves
Chapter 1:
One Dimensional Shock Wave Formation is an Example of a Cusp Catastrophe

This chapter is based on the standard definitions for shock-wave formation. By a careful
analysis of the region around the breaking point we may obtain an equation relating the
characteristic variable to the space and time variables. This equation may be rescaled around
the breaking point and simplified using (full) Taylor expansions to obtain a single equation in
these three (rescaled) variables. This equation then describes a surface in these three
dimensions. All intuitive and geometric arguments suggest that this surface represents a cusp
catastrophe. The purpose of this chapter is to prove this result rigorously and also to provide a
sequence of wnfoldings which may be induced from eachother, starting from the characteristic
manifold unfolding and ending with the cusp catastrophe unfolding.

The first step is to derive the rescaled characteristic equation.

The second step is to write this equation in the form of an unfolding function by integrating it.
It may also be worthwhile changing one of the parameter variables and changing the notation
at this stage.

The third step is to write down all the relevant definitions and theorems from catastrophe
theory (from Poston & Stewart pp. 157-160) in the one independent variable case (i.e. n=1),
namely:

fis a smooth function from R to R. 7
j k f is the Taylor expansion of f'to order k.
Jﬂl&s #~kiminus £(0).

fis k-determinate at 0 if any smooth function ft+g, where g is of order k+1 at 0, can be locally
expressed as f{y(x)) where y is a smooth reversible change of co-ordinate.

fis strongly k-determinate if y can always be chosen such that dy/dx=1 at 0 (I think this is
trivial in the one-dimensional case). v

fis locally k-determinate at 0 if there exists eps > 0 such that for any smooth function g with
mod((d~k g)/(d x"k)) <eps

the function f+g can be expressed locally as f(y(x)) where y is a smooth reversible local change
of variable.

E*k={a 0+a 1x+a 2x"2+ .. +a kx"k}

Jk={a Ix+a2x"2+..+a kx"k}

I"k={a_2x"2+..+a kx"k}

M*k = {a_k x"k}

Del_k(f) is the subspace of J"k spanned by trunc(Q j"k(df/dx),k) where Q is in E'Z. R
trunc(J k+1 Del_k+1(f),k+1) is the subspace of J"k+1 spanned by all of

trunc(Q j°k+1(d/dx(j"k+1 £)),k+1), where Q is in any of M"1 to M"k+1.

trunc(I”k+1 Del_k+1(f),k+1) is the subspace of I*k+1 spanned by all of

trunc(Q jk+1(d/dx(j"k f)),k+1), where Q is in any of M"2 to M k+1.
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The codimension of f at 0, cod(f) is the codimension of Del_k(f) in ]k for any k for which f
is k-determinate.

An r-unfolding of f at 0 is a function F:RMr+1) -=> R,
(x,t_1,.,t 1) ->F_t(x)

such that F_0(x) = f(x), defined in a region around (0,...,0).
A d-unfolding G is induced from F by three mappings, defined in a region about the origin:

e:RNd -> R, (s_1,...,s_d) -=> (e_1(s),...,e_1(s))
y:R*(d+1) >R (x,8) -> y(x,8)
gam: R -> R

provided / u\ \/po-e sr-t:) MJ‘;FO g F
Gx9) = F(y_sx).e(s) + gam(s) T tm our Cas@ Ly Ve | cost: '
Two r-unfoldings are strongly equivalent to eachother if they can be induced from eachother

with (dpar e_i )/(dpar t_j) = delta_ij at 0.

An r-unfolding of f at 0 is versal if all other unfoldings of f at 0 can be induced from it.
An r-unfolding of f at 0 is universal if it is versal and r = cod({).
If F is an unfolding of f, set

v~k_1(F) = dpar/(dpar t) (J*k(F_(t_1,0,...,0)))

v*k_2(F) = dpar/(dpar t) (J"k(F_(0,t_2,0,...,0)))

vk_r(F) = dpar/(dpar ) (Pk(E_(0,..,0,t_1)))

Then V/Ak(F) = span{v"k_1(F),...,v"k_r(F)}

Theorem 8.4

fis k-determinate if and only if, for all P in M"(k+1),

MA(k+1) subspace trunc(J*(k+1) Del_(k+1) (j*k £+ P), k+1).
Theorem 8.6

An r-unfolding F of f, where f'is k-determinate, is versal if and only if V~k(F) and Del k(f) are
transverse subspaces of J"'k.

Corollary

If f'is k-determinate, then a universal unfolding for f may be constructed by choosing a cobasis
v_1,...,v_c for Del_k(f) in J*k and setting

Fixt 1,..tc)=fx)+t 1v_1x)+..+t cv_c(x)

Theorem 8.7
A versal unfolding F of f'is strongly equivalent to the truncated unfolding
j*p f(x) +t_1 J*q(dpar/(dpar Qf_(t_l 0,,.,0)+ .. +tr J"q(dpar(dpar‘g‘_F_(D,...,O,t_r))

if fis strongly k-determinate, k >= 3, and

p>=2k-3, q>=k2 when M"(k-1) subspace Del_(k+1) (f)
p>=2k-2, q>=k-1 when M7k subspace Del_(k+1) (f)
p>=2k-1, q>=k when M7"(k+1) subspace Del_(k+1) (f)

At least one of these cases must hold.
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Appendix B

Whole Example Activity Transcript

9. A Short Account of Trying to Write up Part of
my Ph.D. Thesis

9.2 Background
(Written after 8 days, with minor edits later.)

My general aim had been to explicitly characterise regions to the solution of the one-
dimensional unsteady wave equation by the number of solutions the wave equation
has for each point in terms of derivatives of the initial wave speed. The standard
solution technique is to plot lines on which the solution is constant whose slope is
related to the wave speed, known as charcteristic curves. The generally accepted
result is that when the initial wave speed has an inflection point, is decreasing with
respect to the base line and has positive third derivative then a breaking point will
occur at which the solution surface initially starts to overturn. After this point, it
is possible to locally obtain two curves called caustics which mark the boundary to
the region in which the solution is triple-valued. Outside this region the solution
locally remains single-valued.

I had managed to derive the expected character for the breaking point and a
parametrization for the caustic curves, but I was having trouble showing that the
caustic curves marked the boundary to the multi-valued region. I had tried to
tackle the problem by showing that, locally, any two characteristics could only in-
tersect within this region. I had initially tried to show that chracteristics near the
breaking characteristic can only intersect at or after the breaking time. However,
I was unable to show the intersection time was bounded above the breaking time
for a suitably small region of the base line about the point from which the breaking
characteristic emanates.

In my efforts to prove this result, my intuition had led me to construct a lemma
relating the caustic curves to a new space-time variable defined perpendicular to
the breaking characteristic. This construction was justified by a previous analysis I
had done which used the same variable in obtaining a catastrophe theory character-
ization of the breaking point. The asymptotic relation was a cubic in this variable
(corresponding to the characteristic variable), which seemed to concur with the
caustics forming a cusp at the breaking point (given by a cubic surface). I had gone
further and looked separately at the cases in which the characteristics were on the
same side or on opposite sides of the breaking characteristic. I felt I had managed
to prove the result, but my working had been rather sketchy and difficult to put
back together later.

In order to put the work on a more secure footing, I felt I should start with a more
accurate relationship between this new variable and the caustic curves and managed,
on paper, to obtain the next term in a series expansion. However, whilst preparing
to discuss the work with Professor Jeffery and during the process of writing this
lemma up on my computer, I realised two things:
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1. If the solution is triple-valued within the region delimited by the caustic curves
then there are exactly three unique characteristics which go through any given
point. This implied an alternative to selecting two arbitrary characteristics
and finding their intersection point: given an initial space time point it should
be possible to prove that the characteristic equation has exactly three solu-
tions for a point in a region bounded by the caustic curves. This could be
shown if the characteristic equation was itself a cubic in terms of the space-
time variables. Again, to derive this cubic equation was consistent with the
catastrophe theory analysis I had done previously, so I felt I was on the right
track. This would also overcome the problem of finding the third solution and
proving that there were no others. (What I actaully had was nearly a cubic - a
precise difinition of how near and how it affected using this method is beyond
the scope of this article.)

2. What was required was an exact relationship between the caustic curves and
the new space-time variable. I hoped to match this relationship exactly with
the local boundary at which the cubic characteristic equation became multi-
valued. This thought was only really half-formed in my mind.

I therefore switched direction and started looking at the characteristic equation for
a fixed point in space. I managed to obtain this equation along with the exact
solution for the caustic curves in terms of the new space-time variable. In the
process of doing this, I reparametrized all the variables about the breaking point,
putting a tilde on top of them.

(However, during the process of writing up this account I have realised that I have
overly devalued the previous direction I had taken and now intend to combine both
approaches.)

This is about where I had reached before the evening of 31 January 1995.

9.3 Account of the Evening’s Work
(Also written after 8 days.)

I started by writing down the reparametrized characteristic equation for a given
space-time point:

1— i) (€p)i

(3) A\ ¢3 1
6 (En) ¢y (€ +E)E (1)

z — co(€B)t = co(€)EE —

where ¢o(z) is the wave speed along the base line ¢ = 0, cén) is the nth derivative

of ¢ and £ is some value of ¢ between 0 and £, given by a series expansion of one
of the derivatives of co (details to follow later).

I was thinking about this equation as a cubic in €. In order to have a clearer picture
in my mind of what to do next, T decided to consider a model equation:

23 +ax+b=0 (2)
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(This is the standard simplified equation used in catastrophe theory.)
I made the following statements:

When b = 0, z = 0 is a solution, and there are two further solutions for
a <0.

Whena=0,23= -bsoz= (—b)%; b > 0 implies z < 0.

These statements helped me to draw a diagram of the surface x against a and b.
I knew that this surface would have the required features such as:

e overturning, leading to a triple-valued region inbetween two caustic curves on
one side of the b-axis; and

e a square-root pitchfork along the a-axis (relevant to later work when the
Rankine Hugoniot Jump Conditions are used to fit a shock within the triple-
valued region).

However, I had forgotten what the caustic parametrization was, so I decided to
calculate it.
I initially recalled and wrote down the surface used in the catastrophe theory anal-

ysis [PosT78]:
4 2

F(m;a,b):%+a%+bz

which has the property:

oF

— =0 implies z° +azx+b=0

ox
However, I did not eventually use this result. Instead, I started to think about
caustics. I realized that the solution surface would have an infinite slope on them.
I had not thought of this immediately because I was not thinking of = as a function
of a and b.

I differentiated (2) with respect to b to obtain:

oz ox
2
- - 1=
3z % +a 2% + 0
from which I inferred:
oz 1
b 3z2+a

which I noted became infinite when:
a=—3z° (3)

I then differentiated (2) with respect to a to get:

e,
3$28_z +z=0 (4)
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implying:
ox 1

da 3z

which I noted was only infinite when = = 0. I could not understand why only the
partial of z with respect to b gives an equation for the caustic (what I have later
realised is that z = 0 does not necessarily imply this derivative is infinite because
it is also a solution of (4); this means that the equation does not tell us anything
about the infinite derivatives, something I still find puzzling, but I can now see how
to investigate); taking a cross-section of the diagram parallel to the a-axis should
work as well. I could only think that it was something to do with the fact that
the caustic curves were initially parallel with the a-axis when they first formed and
later only deviated asymptotically by a cubic, but I did not find this convincing -
why should it affect cross-sections for finite values of b?

Leaving this problem unresolved, I carried on with my analysis, writing down a
sequence of equations (I was trying to find the relationship between a and b on the
caustics using (2) and (3)):

a = 3z°
2 —3234+b = 0
b = 213

(having found @ and b in terms of z, all [ needed to do was eliminate z):

a® = —27a°
b2 Az®
b2 a®
SO Z = _E
2 3
so b = ig —% (5)

[ then went back to the initial equation (1) with the objective of applying an anlo-
gous process in order to obtain an equaion for the caustic curves.

I rewrote (1) using the new space-time variable Z = & — co(€p)f and f(t) for the
fractional part of the £ coefficient:

z = co(En)tz — f(Dey (65 +)E° (6)
I then proceeded with an analogous argument to that for the model equation:
" . t
7=0 implies £ =0 or & = ~Co(g§}3) -
f)ey (€ +€)
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I considered expanding the right hand side of this final equation as a power series

in € but instead chose to keep to the analogy and attmept to find £ as a function
- - 0

of 2 and £. The analogous method would be to calculate 8_5" However, in order to

calculate this derivative, I realised that I needed an explicit term for Co (5 B+ «S) in

terms of £.

I found the series expansion from which ¢ was derived:

co€s + &) = colén) + &0 (Ep) + j L —n2e (€a +mdn

(Note: there is no second derivative term in the expansion because co () has an
inflection point at z = £p.)
The last term in the right-hand-side of this equation then matches with the term:

e+

Thls meant that I was now able to rewrite (6) as:

) 1) (¢ ; 3,z
5 = co(€p)iE - ﬁ / (& — )2e (€ +m)dn (7)

I re-emphasised the fact that I was trying to find £ as a function of # and . I was
now in a position to differentiate (7) with respect to z:

1— c§” Es)t| o

e | 72 f E-npedes+n)in  (®)

== CO(EB)E% -

Before proceeding, I was a bit concerned that the original equation I had used (1)
was incorrect and sought supportive evidence from [Sam89] from which I obtained
the equation:

o ] 1 ~ o(¢B)
m=§+60(53+6){4m+t}+ (1)(;) Y

This seemed to be the right sort of thing so I didn’t match the two equations exactly
at this satge.

Instead, I switched back to calculating the partial derivative on the right-hand-side
of (8):

2 [ nreden+ i —25; f s tmdn  (10)
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I noted that the integral contribution vanishes as it is evaluated when n = 3

Combining (8) with (10) allowed me to state that the integral % becomes infinite

when:

Wil fE .
colén)t - {1—“(—&3”] / (€~ )i (s +n)dn =0 (1)

I wanted to rearrange this equation to make ¢ the subject. In order to simplify the
working I decided to introduce an intermediate variable by defining:

£ .
/0 E =) (e +n)dn = E1() (12)

(The introduction of the €2 term was to ensure that the integral I (€) was of the
right order.)

Using this definition, I inferred that:

£ eolen) +E1(8)

1 "
SR N, L § 13
] oo (13)

which implied:
t=

—_—
" (¢8) [colen) + E1(0)]
I then considered whether I should attmept to eliminate £ from (7) by inverting

(14). T envisaged doing this by expanding (14) as a power series in ¢ and back-
substituting. I thought a suitable series would be of the form:

§=of? + B+~ + 08 +... (15)

In order to achieve this, I would have to find I(€) as a power series in ¢. I noted that
this process should yield the same solution as the caustic parametrization equation
(9) which I now rewrote as:

co(és + &) — co(éB) 16
Cgl)(EB +§) =

F=€—

9.4 Review
(Notes made about three weeks later and written up after two and a half months.)

In trying to find a more explicit relationship between ¢ and ¢, I found I had made
a mistake in equation (13): the term co(¢p) in the first bracket should have been
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c(()l)(ﬁ 5). My mistake became evident when I tried to calculate the sign of ¢. Al-
though I could have confirmed this with a dimensional analysis, I decided to make
completely sure by going back to the parametric definition of the caustic curves. I
applied the partial derivative method to the original characteristic equation as in
the above analysis. This was an improvement over the previous method I had used
which had involved calculating the equations of the caustics using neighbouring
characteristics.

This gave me the symmetrical relationship:

¢i(¢n +8) — i (¢n) a7
e (€8)es” (€ +6)

This confimed my mistake (I later arrived at this equation via a different analysis)
but also gave me some confidence about the internal consistency of the original
analysis.

I was not completely happy about the reparametrized characteristic equation (1)
and derived it again from first principles. As this is just a reparametrization of
the original characteristic equation, I assumed that taking partial derivatives of the
reparametrized chracteristic equation with respect to ¢ and # would yield the same
equation as (17). However, by analogy with the above working, I was not clear as

t=

to whether g% would become infinite on the edge of the solution surface. I was

still not happy with the analysis of the model equation. I went back to it and found
a mistake in (4) - I had left out one of the terms in differentiating the product az
with respect to a. My judgement was telling me something was wrong but I hadn’t
found the mistake at the time.

I am still not completely clear about the connection between infinite value of the
derivatives on the edge of the characteristic surface (1) and a triple-valued region.
I feel the answer lies in looking more closely at equation (17). I have had a couple
of further attempts, but concede that I may need to resort (at least initially) to a
catastrophe theory analysis, giving an existential result, rather than a constructive
one.

Another thought I have had (off and on) is that the leading order power relationships
between Z, £, 7 and £ are also suggested by the model equation analysis of the caustic
curves. This is what [ was doing in part in (15).
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Appendix C

Examples of Mathematical Concept Maps

Double Helix, Vol 2, 2014

Single 1D
unsteady Method of
wave characteristics
equation
> B
charactenstics
Straight Iine
Two 1D charactenstics
Second order
unsteady Curyed approximation -
wave Charactenstics Pp
. intractable?
equations
First order
Diacenalise approximation
the thx matinx
Riemann
invariants
¥
n1D .
Linear
unsteady .
approximation
wave theory
equations
Invariant
differentials
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Conservation

Non-diffusive
laws

Limitingly
small
diffusion

Diffusive

Shock
formation and
propagation

Convergence

Solution non-
unigueness:
admissibility
criteria

Analytical

properties conditions .
solution:

regularity

Numerical
convergence:
algorithm
design

Entro -
: Py Choice of
Entropy increases at ;
: ) function
increases a maximum

space
rate P

Characteristics
converge

Y
Artificial Physical

diffusion can origin of
improve diffusive
stability terms

Discretization
introduces
dissipation

Mathematical Treatment of Conservation Laws with Limiting Diffusion
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Report 1 - Overall Structure

Section 2

Jump
conditions
approximation

Section 1
[ ™
Generalized structure of weak ;
shocks (symmetric v. non- Sh‘;ﬁk fitting
symmetric) eory
~ A
Section 3

Lighthill's

First order
approximation
(symmetric)

Polytropic

Section 4
model
% ™y
Second order Construction
approximation Ei of non-
(non- symmetric
symmetric) fitting function

Navier-Stokes
equations
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Appendix D

Annotated Draft and Transcript of Entire Extract

N

L R

E¥T)

,\-

\

>

{

iy |

N

W)

v

i - 34 -
"T

Differentiating equation (2.32) with respect to § gives ( Sew\d Sy -~
Ldoed
1 B T Y i
e(€) a3>\ 2 O,
J (E,7)dr + 2df ——2—T§(§.t) (2.35)
o
xf;wk v ”( \ s ‘ _i/f \’
Substituting § = §b gives - c#‘ / \LAM /‘,;;,4‘ ,/'"\')\, - ¥ // : -\’
Jh e R M T S
PARS & > o
t
8% an, b &k,
—5 (&) 7 Eprtp) = - J —3 (§,.7)dr
ag
o
Hence
.4
an, g”'aBAo
ER (§b'tb) J 3 (fb-T)dT <0 (2.36)
o€
o
(note the possible equality).
The last property of the breaking point, as before, is found by
substituting into the integral equation (2.24) to give
b
X, = §b +J Ao(fb,T)dT 3 (2.37)
o

using equation (2.25).

No proof that the breaking point is well-defined by this process is

given here. The lemma would, however, be exactly the same as before
with an analogous proof. Veporg Voo ol Shvockemed andsedeos
o7 CAmn (eoe A
\ . 1\
N L)

2.2 Catastrophe Theory Analysis

The object of this analysis is to show that the breakdown point is

an example of the cusp catastrophe and then to derive any properties
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QA

LR which naturally follow.
%7 2.2.1 One Equation
LB

RN (2.1,). (2.3)
| 6~ (2.10):

L%, (2.9):

L BT (2:12):

LD (2.13):

[ 424 We

L¥w (2.38) about the breaking point.

LBy X =x + %
[ RN t = tb + €t
P = + 3
[ Mo E=g +§

[_if;)+ equation (2.38) becomes

L_Lb 1% Xy + X = Eb +

Gy

“a

s

res

- 35 -

= x=§+ (0.
. 1
BT TNGE
1
AO(Eb) =0,
)\III
J(E,) >0,

X,b = §b + Ao(fb)tb .

Recalling the equations for the breaking point from 82.1.1:

wish to perform a local rescaling of the characteristic equation

Introducing rescaled variables

< b
(B \RRENY
K
~ ~ ~
+ + 3l .
Ern (B B) {5+ D
@) 4 ~ ,_/‘ \ 14 /»,“
P, B e W
\ \ " Z
v AP 255 A ) C &

(2.38)

(2.39)

(2.40)
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EFW P2

Riv2e

L

=D

e

- 36 -
Equations (2.38) and (2.40) yield

x =&+ Ao(§b+ £) {tb+ t} - Ao(Eb)tb ;
rearranging gives

X =8+ (A (B §) - A (I, + A (Er )T

Performing a Taylor expansion with integral remainders we obtain

>05© -( 2 \
awnle "“‘?_,’_’t ‘o > e S
N[ \ v -

(',_"l'z ) =

(2.41)

(2.42)

E
/ / ~2
%o n (6T = (B + Sl [ o @ - w2 NMGE man) g,
o

3
+ ?J AL (B m)dn .
o] \ i ~
f—_— ; \‘.. eSS "(_) ‘\ 5SSk //\) A ( S‘r i '_{
This reduces to L T\\d\ \/sxihf XX e
s N 1) - \ A A
SQ%J:W& So Ge Yote \"\ S
%
g 3
%o a (€% = 2 @ -2 dn + T | A(E+ m)d
x = A (&t =57 (€ - m)7 N J(Egr mdn + £ | AJ(E+ m)dn .
o o
Finally, introducing
Z=x- xo(gb)?
equation (2.44) becomes
3 3
~ EE J ~ 2 AYE & md ol S TE & 1i)d
z =5 | (£ - m)7 NJ(E+ n)dn + t| A/ (& + n)dn .
o o

(2.43)

AL CLSS e

(2.44)

(2.45)

(2.46)

J
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L‘;-:l‘\:"’r i': ( ; \ >C e, U WE: (vn) () o ~
~ =2 ey =] ) A~ / J / J 2> VYN L) e\ ) Y
J!L'/.Lk .r ,; L ! - s

2 This equation defines a surface on (z,t,f) space. An equivalent

L2 leading order expansion of equation (2.46) was performed by Haberman in

| 3 [3]. where he showed that the leading order terms (chosen in some sense)

LK correspond to a cusp catastrophe. Our intention here is to arrive at
G\M— ) the same results using more formal ;?éuments.

To this end, equation (2.46) is transformed into a form relating to

~ e

] an unfolding. We seek a function F(£:z.t) with the following

*\ji“\i*"/?“/&’ properties:

FRml ot
J e F(0:z.T) =0 Yz .7t (2.47)
Lo F ¥Z.%) =0 VE:Z.7T. satisfying (2.46). (2.48)
ag
D) R \
- Such a function is given by o - ‘ { '\ »
Q‘QA i J o .—r’\}t' of -{;{f\‘ ‘(.;;’\' if
B ( g by
. £ m § =
L2 FEZLY = 2 (m 02", + 0)dg |dn+ T N (E + c)dc]dn -z §
e T 2 o'°b o"b :
o o o o
yre (2.49)
/ < ™\
/\c,-‘f—/g!r N )
)
’—-"L- For ease of notation, an analogous function is considered. Let
) : X Y X ¥y
L"-@- F(x:a,b) = J U (y - 2)2 g{z)dz]dy + a J [ J’h(z)dz]dy + bx . (2.50)
Cyd-E o o o o
pEA N T \ N
//"/‘ - | | C | — \
: !--—/XC%: f\‘;'(,\"‘} AR ‘P-r’ \ e "’\‘J"r& \' fon T e
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Y\ P
- \ ‘(s) & e ¥ R
EFPS a"? ) '\ - y ‘Nr_/- 5y (A \
TS ' ' Y B ’ 7
R PR3 Bt
L{ This function clearly obeys

; A ted
L RO VIV, O%
[

a e \ : (2.51)
b Coltt 1 S &_(‘\\ /’ C‘«"»:c st

L & oC R ] o B
‘ { e YO € ».»v.\»{in‘\:wc.‘l SRR (J)(,)rr»x.x
|2 Also, the equation '\)\2 W b (,U_< v

Lo\ ebe : Q!

Comn et -lm.z\
s g—g(x:a.b) =0 gy -

L%, will analogously lead to the equation of a surface in (a,b,x) space.

Following the ideas of catastrophe theory «[4]0 we attempt to show
, (, e HRA)L
i+ that F(x,a,b) forms the first of a sequence of unfoldmgs which may be

— METHED
] @ induced from each other, ending up with the standard form of the
,¢{ universal unfolding of %x* (which is the cusp catastrophe unfolding
Lic il{nctiqn. A+3).
Al The first step is to show that STEPA
== At

K" '5)\\-('-.1"\?14)\
L2 f(x) = F(x;0,0) (2.53)

L ‘o‘\{"’ Lwe N

JZ is strongly 4 - determinate (where k-determinate is defined as in

ey T o ofamag i ’( Con Cos teen s
Ly [4D). P2b | ; e = -
T\EA
L Following theorem 8.1 of [4] in the single variable case, f 1is
i |l, strongly 4 - determinate if and only if 3 A ag € R such that
gyl \_‘, c VPt '*‘A QIR (“‘Aui-( Ak “/\'Q ‘1(/‘ w-"\(" e e A
AL o I - f
5 /\ 2. P(V A e "\I,.g‘\_‘—\« {'.-,.w_g wh > Ot
5 ( k.( ! \
e ) oecy W\ -~ .
? Ya ] 2 [& ¢ - 5.5
J- a_ x J o : \ ( 4)
(/»( "Z_ Cee , \«Q,.ﬂ oS \\,h\ Fu-
t N P . = i » ] .t
neS o e O&' oSTRRY "/4—7/ -’~—L, all a5 clen i»\k e coe Sceueel gomialled.
| where jk¢ is the Taylor expansion of ¢ about the origin up to order \’,/'
—k
119 k and denotes truncation at order k .
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107 4

R © - 39 -
I V<

N
o

Equations (2.50) and (2.53) imply

X ¥

[ 2 .
Lz f(x) = j [ J’ (y-z)” g(z)dz|dy . (2.25)
o o
’LZ Calculating successive derivatives of f gives
X
P ) 2
i e = [ e a (2.56)
o
1 i xX
> 1
' f(x)= J 2(x-y) g(y) dy . (2.57)
o
‘ P
) m
—0 f(x) = J 2g(y) dy . (2.58)
o
L3 -
f (%) = 2g(x) . (2.59)
./'
‘__:-: Recalling the Taylor expansion for f'(x) .
f -1 Jod S s I x2 m x3 v
L& Jf'(x) = £'(o) + xf (o)+2—1f(o)+§-f (o) . (2.80)
1o Therefore, we obtain
3 x3
L\ i7 £(x) = 3—g(0) . (2.61)
Z We may assume g(o) > O as this corresponds to equation (2.12) in
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=het =

U Pi 0

Lo

I 1)

our original notation. Therefore, equation (2.54) can clearly be

satisfied by setting

A ~ ey N
§ (TS: { o= o#.axrh\ > 7

A\ A NPl
C \

% )

3
ao_O, al_o, a2=m,a.3_0,a4_0. 2.5—0. (262) "
SVET )
(bxm?,';;( E

So we conclude that f 1is indeed strongly 4 - determinate. = Q{({B%:¥

Now, by definition, this implies that there exists a neighbourhood/,

oRo L& R

' . o G- ilins e {25 of C -
N of O anda function »dofet Seonito le o (Pl of )
& LN i » 3! ’ oo T —
L\\A \%L\ N S ‘&.”'-r OAR  Aa~e Leonn, L log F>6
N { , < 9D
6 : N=-R . o A U (‘ A~ v i

\ ( :

with the property

L (o) =1 (2.63)

vrxeN, f(x) = &8t (2.64)

It is possible to determine 6(x) by a naive polynomial expansion

e~ 7 LI L R,
6 =x + E'arx . S (2.65)
r=2 ' ,‘\/7“/

In order to transform the unfolding into the standard form, we define

the function ¢ by

¢ = [ﬂc%él%e : (2.66)
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\ O @)
£} A A5
R Pl CH-
Ly so
s(x)*
|2 £(x) = 2EL (2.67)
v\n':_t J\:ﬁ L"A ':;‘ Cos30 _a = '7.-\\‘”1-5( W
i \
LZ It wi}rl be assumed that this function is invertible for small x and
Ly ¢ ., and that the inverse function may be approximated by a finite

= Taylor series. It will turn out later that we require the quadratic

LG term in this expansion. For simplicity, let us first consider the
L:,T- inversion of equation (2.65):
- 2 3 {,
|2 x(8) = 0 + AB” + 0(6) N Y (2.68)
.y “/,\ | > 7
[ for some constant A . ‘
(10 But, differentiating equation (2.59) gives
i) £V (x) = 2g' (x) . (2.69)
L ,:, Therefore,
.5 0 4 : 5
[ 12 P£(x) = El2he()? + EL0ky(0)® (2.70)

JRrs Substituting in equation (2.68) gives

s £(x(0)) = 2L (6% + ane®) + g.L0) 6° 4 0 . (2.71)
Lo Thus, equating terms of fifth order in 6 gives
LT 5—1@211 4A + %ﬂl -0, (2.72)
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E+ Plo G
Qo Civ2 e -
L\ implying, i ¢ .

'SA 4\\/\;(\/ o Ir" {‘/A:‘ S AT (G~
) \o' ‘ e
(o

[\ P
\& C\/ j ~ \Rdg

0 o 0 o\ CRo\e
2 A - gzog((%) _ - ; (2.73)
L°Z  We may now define a function G(¢:a.b) such that
Ly G(¢;a,b) = F(x(¢):a.b) . (2.74)
4 “>  This may be written explicitly, using equation (2.50) as
’ x(¢) v x(¢) vy
| & [ G(¢:a.b) = J U (v - 2)° g(z)dz]dy +a [ h(Z)dZ]dy + bx(¢) .
<; o] o /P o o
(2.75)
a\SO ,“\/’\-f'\,, PARV-ZS ak nof l.\" o '&i' x( : f}
§ - (W) 2
L Using equations (2.53) and (2.67), this simplifies to <) ¥ \ \
(gl Y2 . )
T (¢ 20
('(\-;_J'—J“ / 8 I S O
- = ) = P
N s X ¥ \ T
| G(¢:a.b) = Ej;— + aj [ Jh(z)dz]dy + bx(9) . (2.76)
o o

I\ Also, equations (2.66), (2.68) and (2.73) give

9.\ S A& hare kv @ YA Po
(‘/_ [0(3)‘\,;_&},5\\'\ € C \\‘\\L

/’""”% . % D OfF
w0 = [B]'s - glol 257 6+ 0™ .77y BN

CooRulLL 0
\f\> \B% -

The next step is to use theorem 8.7 in [4] to prove the existence of a CXEF2

P e 2\ =)

more simple unfolding from which G may be induced. We therefore 5 =N
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: y CBY 8N e DuteN FueN « K2 4 —R 0 N
Eq—\?\\ = s "{‘//’("./,‘v"/ N\‘i) ii\g)-s )\/”\F
i< 2 - 43 -
] attempt to apply this theorem with the following values of the relevant
o )
|| constants: - o c»\< ) -
— | (}‘XQV(JW \I\L~,-> e .\/‘ 5 »»\f—\QE
{n WTANCE / /
o L% k=4, p=5, q=2, r=2, n=1. (2.78)
(W EOREM

L4 The conditions we need to meet are as follows:

(on>(TIoNS

oF TOEOREM . 3 /‘ sk X
; o i) ¢ /4 1is strongly 4 - determinate;
o Gy e 4, ) - )
L ii) 1 Cc A5(¢ 4) (as we are attempting to satisfy case a) );
;= iii) G is a ‘Y—e’@g_l_}_mfolding of ¢4/4 s
L <
CHENC T R s~ s eplamdion
CoNDITION > > B v

/2 Condition 1i) is trivially satisfied (e.g. it is equivalent to the

N/ >
(\)v { 4 preceding analysis of f(x) being strongly 4 - determinate with all .

,io derivatives of /E\\ zero at the origin). 5 A i X A Cal,
\~‘_\\.>—\(“.A£7 (5(/{/"0/;’)_&& \)\) LIO~ (Lp/ ' - g 4
L | Let us consider condition ii). By definition (see [4] again), f
=30 { > - R ‘
= 02f [vyir R o oo 5%
; 3 / \
L19 M = {A¢° st /€ R} , . (2.79)
5 5
\2 4 5 4
J\2 A (8774) = { z a_ o' [g—qb (¢ /4)] st a,....ag € m} . (2.80)
r=o
L—\H' = {a0¢3 +a; ¢4‘ + a2¢5 sta . a; . 3y € IR} : (2.81)
i //.l‘} So condition 1ii) is easily satisfied by setting A = a, - o
\W)v
L% Finally, it is shown that condition iii) is satisfied. The
]\ following notation needs to be introduced:
lie T°F = 35 = % , (2.82)

3 8 5 \/(,Tl\'. ?f J\:kj._ vl t"'::)»""”
J ://
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k B R /R
- NNMEEN AT CE) ) e Lo
b?V\(L C)_LC};/ N LG Sa/\/ (Q_,\}/ >P.
Rex Puyit ==
k ad k
L) v, (6) = z [J (G(¢:a.,J))] ; (2.83)
O \ ;
3 O ‘v.’(.»\\" <
/‘_’1 and similarly, Ao oS o ﬁi c; e & e
k 8 (k.. "
L"/\ Vb(G) = a—b- J (G((P:/O.b)) . (284)
: r 0 itz 2
|4 Let VE(G) = span (vi(G). vi(€)) . e Sk ol Lochias ob (3.g5)
- j 'f-/\'.?a winea 4;."‘?(3\1'(/\ =‘JF?/{\‘, \
\ = > (P S
PF e .
/%S Now, theorem 8.6 in [4] states that G is versal when V (G) and
i 4 k ¢4 ; ;
[ Ak(¢ /4) are transverse subspaces of ‘Il , Wwhere 7 1is k-determinate.

k
P~ k _ g _ "
L3 [‘Il = { z ar¢ st a;.....a € IR}] . Clearly, here, k =4 . Equations
r=1

] 2 (2.76) and (2.83) with k = 4 give

x(¢) v
L4 vie) = J* . [ Lh(z)dz]dy (2.86)
L\C v;f(c> = J%(9) . (2.87)

([l We have the general result for u = u(¢) that

2 9 .3 3 4 4 ol
bt 4 d d d d
L2 4= d:(°)"’ * d¢;(°) gz i d;é (o) g! * d¢: (0) 2! : (2:88)

5 Now, similarly to equation (2.81), it can be shown that

L% b (879 = {a8® + ap? scag.aem) (2.99)

1

Lol Yoz L
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)
2w
= - 45 -
Clearly,
; 4
dim Jl =& , (2.90)
Also, equation (2.89) simply gives

dim A, (¢7/4) = 2 . (2.91)

Furthermore, equation (2.88) shows that the coefficients of ¢ in

v:(G) and (Vg(G) are constants, so we must have

AY
ad> \/‘f(/f ) < L
A CICER ey 1 (2.92)
( a N Lpowm s .
R L.’nv\\\‘ e ? / o vt O S M‘Jv\ , wnlileely
4 A ) poreds o)
Therefore, A4(¢4/4) and V4(G) are transverse subspaces of - J? if
and only if
. 4 4
dim (A4(¢ /4) NV(G) =4-2-2=0. (2.93)
t
3 D e s S X
It can be shown that, up to order ¢~ , il >3 ; \,‘}A (s
\» AALCUN ’\;
2 2 '
4, _ [dx ¢” 3
va(G) = &E#o)] h(o)2! + 0(¢) (2.94)
4 dx 2k, S 3
vi(Q) = (0)e + E(0)dr + 0(¢)° . (2.95)
b d¢é d¢2 2!

Therefore, as A4(¢4/4) = 0(¢)3 , we may infer that A4(¢4/4) and

V4(G) only intersect at isolated points (assuming the higher order

<]j i, (Vo \/\\&41 S

(\ \ \,\ o) \\\ (,.»\_)\ \'/JJV

\ A2
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Z

Ra 76 . - 46 -
£ . 4 4 . . P
[} terms in va(G) and Vb(G) are not proportional, which verifies

|7 equations (2.93) and hence condition iii).

[ES So we have, by theorem 8.7, that G{¢;a,b) is strongly equivalent

L4  to another unfolding H(y;a,B) . where

4
L5 s = )+ al[Zowian)] « B[ cwmom] . 200)

NES

% The strong equivalence condition means that G may be induced from H

7 (so ¥ =y(¢:a,b) . «a

a(a,b) . B = B(a,b)) with

o “a(y,a,B)
Y i (2.97)
> d(¢,a,b) ¢ =0,a =o0,b=o0 3
Do rdocodfE 7
L% where 13 is the 3 x 3 identity matrix. //JL’\L\\ T |
~./

|10 This equation enables us to envisage another Taylor expansion (here for

/il ¥,a and B) , but these calculations are not presented.

12 However, equation (2.96) still needs to be simplified. Clearly,
4 4
5
Lz PEr =% (2.98)
x(¥) ¥ o8 2 Gl ae)
~ -
Ly Let u(v) =J’ H h(z)dz]dy i (2.99)
o o
| 15 Then,
x(¥)
du dx
Mo dy T dv Lhmdy : (2.100)
/{1 and
2 2 x(¥) 9
L2 d_; = 5d_:2< h(y)dy + [%} h(x(¥)) . (2.101)
dy dy o B

A ‘:"“‘”t won = 5w YO

<) 8
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E3 &5
Ri- Pt F _ 47 -
[ Now, x(o) = o , and
~
S5~ \l AHUT
2 % ik Aw Y
& dx v o (S — p
) = [g(o)] ' / (2.102)

from equations (2.66) and (2.68). So, substituting into the above, we
NN ;

obtain
% 2
e 2 3
{5 J?u = [ﬁ)] h(o)42‘—! . (2.103)
P : .‘vl\»‘ \ € ey “(;.
Ho Hence, by a similar construction to equation (2.86), we obtain
% 2
2 3 2 3
L+ J5(G(¥ie.0)) = J7u = [ﬁ)] h(o)%. (2.104)
i\'\’{’ \.Z Q‘
"‘t\/ It is then simple to show that
Y 2 2
1 m 2 43 2 3 % i
| % J55(G(¥:0.B8)) = Jx(¥) = [g—] ¥i—5 (o) 57 - (2.105)
: ap (o) C d\p2 2!
Lio Equation (2.78) gives . = ,
L\. Ao NA \vu\k Al
‘T’._( s ) \
2 % \ \ \\ \
) d7x g' (o) [g3 ] g
] — = - 2 |—— . (D¥X £ 2.106
LV/ d\p2 (0) 20g(o) (0) \/ \//» ( )
A7 Thus, combining,
Y ¥ 2
, 2 3 3 g' (o) [ga ] ¥
2 T 3 = e - —_— 5 . 2.107
L3 P 55 ot = [5E5] v - ek ] 8 {2201}

- Equations (2.97), (2.99), (2.105) and (2.107) now combine to give

4 , % 2 %
[0S Hia.B) = % + {ah(o) - B %éi(%)}[g:(’—o)] L B[é%] v . (2.108)
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B3 Pk 5. S5k
Ry Faes = 48 ~

STEY 3
H—=>T

-} The final induced transformation is the simple linear transformation of € saste
I
f

L7 coefficents (a,B) » (v.5) given by

L2 - =[a.h(o) oy 543)—} [;—]A (2.109)
10g(0) (o)) '

j i £ o B[g%—o)]% _ (2.110)

'S Giving the final unfolding function

4 2

Lo I(y;7.6) = H(y;a,B) =£— + v% + oY . (2.111)

|7t This is the standard form for the cusp catastrophe (A+3) , as already

/¥  mentioned. RETORNS T )

OGN (\\/ f A

Ka So, as we have been considering an analogous function to the
NoTH T ionN
| \O characteristic unfolding function F(§;z,t) (recall equation (2.49)),
A\ 1t is therefore also possible locally to transform this function into
\ (
| {7 the standard form for the cusp catastrophe. - (. N (| /N"""’“k"”
— v : o Sven (e =T ~\ "/
I g (29 \ A Conshax \(.»’\ \ {
ok ian  a\Se AAN A Ve { n sedl
\ LTz \ QG VErEAFES -
B o
[ {4 2.2.2 Two Equations -

In this subsection we will only attempt to derive the
/\% characteristic manifold equation local to the breaking point and

i i\, transform it into the form of an unfolding.

e First of all, let us recall some of the results of §2.1.2.
| /¢ Equation (2.24) gave the characteristic equation:
\ - Prndl
€=2
t (ot S L3N
[ X(E.0) = £+ [ NOL(E). sCe(Em)rar . T el
o O
A !\
\ -
~ ¢
2,8
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Extract 7 page 3

Report 4 page 36
Top: (n),z
L6, € and £EX)(&): cancel due to (2.10)

L6, 5 \I(&): zero — (2.9)

L7, T [ Xp(& +m)dn: this is just Ao(& + €)
why write it like this?
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L17, z°: I think the theorem states that lhs should be a homogeneous polynomialin z of degree (f’
crossed out) 5
Oh, I see, homogeneous only refers to all order 5 when there are several variables.

L17, Zi:o a,z": has to be of order > 2
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L6: 7 this is trivial
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L9, tjzg;—z: 4+ inserted between these two terms
L11: Again, simply use (2.77)
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Appendix E

Entire Final Proof

One Dimensional Shock Wave
Formation is an Example of a Cusp

Catastrophe

1.1 Introduction

This chapter is based on the standard analysis of shock-wave formation in one-deimensional unsteady
flow [Whi74]. By a careful investigation of the region around the breaking point we may obtain an
equation relating the characteristic variable to the space and time variables. This equation may be
rescaled around the breaking point and simplified using (full) Taylor expansions to obtain a single
equation in these three (rescaled) variables. This equation then describes a surface in these three
dimensions. All intuitive and geometric arguments suggest that this surface represents a cusp catas-
trophe. The purpose of this chapter is to prove this result rigorously by applying the definitions and
theorems stated in [PS78] and also to provide a sequence of unfoldings which may be induced from
eachother, starting from the characteristic manifold unfolding and ending with the standard cusp

catastrophe unfolding.
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Recently, the formation and propagation of shock waves for a single conservation law in multiple
space dimensions and its connection with all possible geometric singularities has been fully ivestiagted
by Izumiya and Kossioris [IK97]. The formation of shocks as an example of a cusp catastrophe in
mulitple space dimensions was originally studied by Nakane [Nak88]. This chapter, however, provides
a specific proof for the case of shock wave formation in one space dimension. This case was previously

investigated by Guckenheimer [Guc75].

1.2 Derivation of the Rescaled Caustic Equation

In this section we shall derive the rescaled characteristic equation from first principles.
We recall the following formulae from volume I:

Let us consider a single conservation law (also called the Cauchy problem):

O %

(I:6.1) e + (1) e 0
(I:8.3) ¥(z,0) = o(x) (1.1)
(I:8.4) c(Y(z,0)) = co(z)
As in [Sch73] let us assume that
Yo, c € C°[R — R) (1.2)
and ¢(1)) is uniformly convex, ie.
d’c
Je > 0 such that Vi) € R,— > & (1.3)

d? ~
Then it is well known, eg. [Lax54, Whi74|, that initially smooth solutions are found by using the

method of characteristics. Let us introduce a family of characteristic curves Iy, as in volume I:

(1:6.14) It = {T(¢)|£€ R}
(1.4)

(1:8.5) TE): =z = &+t

Then it was shown in (I:§6.1) that (1.1) implies that ¢ is constant on I'(£). Following [Whi74], let us

68



Double Helix, Vol 2 (2014)

consider an isolated inflection point in ¢y given by the characteristic curve I'(£g):

1811)  PeEp) = 0

Je > 0 such that V& € [ég —e,&p + €]\ {€8}, P& # 0 (1.5)

. d*e

where, for all functions ¢(z), ¢ (z) g

Then, if we define {5 and xp by:
1
(1:810)  ts = ——
E(3:) (1.6)
zp = &p+ca(B)ts

Then, provided the following conditions on ¢ hold:

(1)
¢ (£8) < 0
’ 1.7)
(1:8.12) P(e) > 0
We have shown in (I:§8.1.2) that the breaking point is the beginning in time of the caustic curve and
that these two equations hold there. However, this feature will not be part of the physical solution

unless we ensure that no other characteristic brings information to the solution before this time. This

is ensured by the following condition:

T —§

co(§)

VE € R\ [£1,€R], > 1B (1.8)

where £} and £}, are defined in (1:8.19,1:8.20). This condition ensures the local feature about (zp,tg)
will indeed form a shock wave irrespective of the Rankine-Hugoniot jump conditions [Ran1889, Hug1870]

or the particular equation of state.

An alternative condition guaranteeing no information interferes with the shock at (xp, tp) is to simply

. 1 ..
ensure that no shock forms before t = tg by the condition that ~ o has a global minimum at

Col) )

£ = &p. This result has not been proved here.

This existence was initially investigated by Schaeffer [Sch73]. The existence of piecewise smooth

solutions with a weaker convexity condition has been proved by Jennings [Jen79].
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Let us introduce the same rescaling variables as in (1:8.35):

r = I—IRB
t = t—tg (1.9)
§ = £-¢5

Then from (I:8.5), (1:8.35) and (1.6) we may deduce:

P={+cés+E)- (ta+1) —colén)ts (1.10)

Introducing Taylor expansions of ¢p(£) about £ and using (1:8.10) and (I:8.11) we obtain:

tp
2

Z=

(s M2 € +n)dn + co(ep)i +F | e+ (1.11)
Let us now introduce the rescaled variable Z, again as in (1:8.35):

F=7—co(EB)t (1.12)
then substituting into (1.11) gives:

€ .
z=t—2£ifo (€ - m)2c§ (5B+n)dn+tf (€ +m)dn (1.13)

1.3 Derivation of the Unfolding Function

In this section we shall rewrite this equation in the form of an unfolding function by integrating it.

We seek a function F(€; ,f) with the following properties:

I
S

vz, T F(0;2,1)
(1.14)

I
S

AF - _ .

1.13) & — (3,7

(1.13) oF (& 21)

Such a function is obtained by integrating (1.13) with respect to £ and applying suitable boundary

conditions to the integrals:

F(E5,0) = [f (- ¢el? (6n -+ )¢ dn-+ [ [ &Oen+ rac]an -2 a9)
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For simplicity, let us introduce the following change of notation:
- i -
98 = Fegs+9)
h _ (1) ¢
(€) ¢ (€ +¢)

o2 = (1.16)

F - F

I
I
=

4

Then (1.15) becomes:

Fup(a) = Flaa,b) = /0 on(y _ z)2g(z)dz} dy + “fox on h(z)dz} dy+bx  (L17)

1.4 Catastrophe Theory Definitions

In this section we state all the relevant definitions and theorems from catastrophe theory from [PST78,
pp-157-160] in the one independent variable case (i.e. n = 1, the suffix 1 has been removed where
it occurred, otherwise all the notation is identical, apart from the definition of J,’f which has been

changed to H* as it would be ambiguous with the Taylor expansion operator), namely:

Definition 1.4.1 (f is smooth)

f € C®[R - R]

Definition 1.4.2 (truncated Taylor expansions)

j*f is the Taylor expansion of f to order k, ie.
kv
P*=3 00 (1.18)
r=0 "~

Alternatively, we may use Tk for 5% f when f is a compound expression.

Definition 1.4.3 (linear truncated Taylor expansions)

JEf =k — £(0) (1.19)
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Definition 1.4.4 (k-determinacy)
f is k-determinate at 0 if any smooth function f + g, where g is of order k+ 1 at 0, can be locally

expressed as f(y(z)) where y is a smooth reversible change of co-ordinate.

Definition 1.4.5 (strong k-determinacy)

d,
f is strongly k-determinate if y can always be chosen such that % =1 atO0.

Definition 1.4.6 (transversality)
Two subsapces U and V' of a vector space W are transverse if

dim(U N V) = max{0, dim(U) + dim(V) — dim(W)} (1.20)

Definition 1.4.7 (polynomials of degree k)

EF = {a0+a1z+agz2+---+ak:ck | 005 Q15 +s w58 € R} (1.21)

Definition 1.4.8 (linear polynomials of degree k)

HY = {alm+a212 + -+ apz® | a1,a9,...,ar € R} (1.22)

Definition 1.4.9 (quadratic polynomials of degree k)

I* = {ag2? + - - - + apz® | a2,03,...,ar € R} (1.23)

Definition 1.4.10 (homogeneous polynomials of degree k)

M* = {apz* | ax € R} (1.24)

Definition 1.4.11 (Ax(f))

——— ok

Ar(f) = H* Nspan {ij (%) |Q e Ek} (1.25)

Definition 1.4.12 (JF1Ap1(7) )

=1

———k+1 k+1 3 d s Ak e i 3
T = B nspand Qi1 (£-641)  1Qe UM (1.26)
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Definition 1.4.13 (5141 (/) )
. v ka1 Bl
I A (f) T = HE*! Nspan § QjF+ (d_x(jkf)) Qe M (127)
=2

Definition 1.4.14 (codimension)

IfU and V are vector spaces and U C V then the codimension of U in V', written cod(U) is given by:
cod(V) = dim(V) — dim(U) (1.28)

The codimension of f at 0, cod(f) is the codimension of Ay(f) in H* for any k for which f is

k-determinate.

Definition 1.4.15 (cobasis)
If U and V are vector spaces and U C V then a cobasis for U in V is a sel of vectors vi,va,...,vm

where m = cod(U), which together with a basis for U yield a basis for V.

Definition 1.4.16 (unfolding)

An r-unfolding of f at 0 is a function

F:R*' - R

(1.29)
(z,t1,...,1) +— F(z;t) = Fy(z)
such that Fo(z) = f(x), defined in a region around (0,...,0).
Definition 1.4.17 (induced unfolding)
A d-unfolding G is induced from F' by three mappings, defined in a region aboul the origin:
e:R* —+ R’
(1.30)
(t1,...,ta) — (e1(t),...,ex(t))
y: R 4 R
(1.31)
(Ivt) = y($7t) = yt—(‘r)
v:R*5 R (1.32)
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provided

G(z;t) = F(ye(z);e(t)) +(t)
(1.33)

ie. Gi(z)

Il

Fet)(ye(2)) +(t)

Definition 1.4.18 (strong equivalence)
Two r-unfoldings are strongly equivalent to eachother if they can be induced from eachother with
881’

Definition 1.4.19 (versality)

An r-unfolding of f at 0 is versal if all other unfoldings of f at 0 can be induced from it.

Definition 1.4.20 (universality)

An r-unfolding of f at 0 is universal if it is versal and r = cod(f).

Definition 1.4.21 (V*(F))

If F is an unfolding of f, set

0
vi(F) = o (Jk(Ftlo ..... 0))
& (&
vs(F) = —— (J°(F
5 (F) 5%, ( (Fo,t2.0 0)) (130
FF) = = (TE(Fb,...0n))
r o, ons 0t
Then
VE(F) = span {o}(F),..., vf (F)} (1.35)
Theorem 1.4.1 (PS78, Theorem 8.1)
[ s strongly k-determinate if and only if
M C A, () (1.36)

Proof See [Sie74, TZ76].
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Theorem 1.4.2 (PS78, Theorem 8.6)
An r-unfolding F of f, where f is k-determinate, is versal if and only if VE(F) and AL(f) are

transverse subspaces of HF.

Proof See [TZ76].

Theorem 1.4.3 (PS78, Theorem 8.6, Corollary)
If f is k-determinate, then a universal unfolding for f may be constructed by choosing a cobasis

V15 ..., Ue for AR(f) in H* and setting

F(z,t1,...,te) = f(x) + tivr(z) + - - + teve(x) (1.37)

Theorem 1.4.4 (PS78, Theorem 8.7)

A wversal unfolding F of f is strongly equivalent to the truncated unfolding

: o B
P f(z) + tlJ‘l—at1 Fio.0+ + tTJq—at Fo.. o4 (1.38)
{

if f is strongly k-determinate, k > 3, and
p>2k—3 g>k—2 when M*1C Ap(f)
p>2%—2 ¢>k—1 when M*C Ap(f) (1.39)
p>2k—1 q>k when M*'C Apii(f)

At least one of these cases must hold.

Proof See [Mag77].

1.5 Application of Catastrophe Theory

In this section, we shall apply these theorems to the unfolding function F,(z) derived in (1.17) in

order to transform it into the standard form of the cusp catastrophe A43:

1'4 $2
Wap(x) = 7 tog The (1.40)
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Firstly, we must show that F is genuinely an unfolding of a smooth function f.

Lemma 1.5.1 F is well defined.

Proof

Let
£(@) = Foolw) = [ [ ['w- 229z ay (1.41)

by using (1.17). We must prove that f is smooth. From (1.16),

v = &
9@ = ~Lddies+9)

(3)

Therefore f is smooth provided 003 is smooth. But ¢y and ¢ are smooth from (1.2). Therefore ¢ is

smooth. Therefore c(()g) is smooth.

Secondly, according to Definition 1.4.16, we must show that F, 3(x) is defined in a region about (0, 0).
This is again guaranteed by the smooth nature of ¢y and the definitions of g and h in (1.16) which go

up to make the function F, ;(x).
The lemma is therefore complete. O

Secondly, as we are aiming at inducing the standard unfolding of the cusp catastrophe, we want to

apply these theorems with k = 4.

Thirdly, we need to show that the smooth function f already derived is strongly 4-determinate by

applying Theorem 1.4.1.

Lemma 1.5.2 f is strongly 4-determinate.

Proof

From Theorem 1.4.1, f is strongly 4-determinate < Va € R Jag, a1, ...,as € R such that:

5

5 . df
a® = |3 aar| 3 (= 1.42
a. |ir 2a$]j ( ) ( )
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From (1.16) we have:

g _ /m(r —y)*9(y)dy (1.43)
dz 0
and by definition we have:
) df dfl $2 d? fl 73 de/
Hl=)=¢ = — = 0 1.44
#(Z)=ro+s Lo+ 570+ 5550 (1.44)
Therefore
2 [ df a3
(=) ==g(0 1.45
# (%) = 590 (1.45)
t
Recalling g(0) = ?Bcég) (€B). So, as tg > 0, it also follows that g(0) > 0.
Thus, assuming a # 0 (in which case the result is trivial), and by setting as = m, and ag, a4, as

arbitrary we obtain the result. O

Lemma 1.5.3 F is versal.

Proof
From Theorem 1.4.2, F is versal when V4(F) and A4(f) are transverse subspaces of H*. Using

Definition 1.4.21 with t; = @ and t9 = b:

vi(F) = J* (/01 [/j h(z)dz} dy)

z? 3, =,
= Eh(()) + —ﬁh (0) + ZlTh (0)

P+ 2 (1.46)
vp(F) = JY%
= z (1.47)
So from Definition 1.4.21:
VA(F) = {u (fc&”@) 1 gc@@) +vz | € R} (1.48)

Therefore, as cél)(gg) < 0 and c((]g) (éB) > 0:

dim V4(F) = 2 (1.49)

77



Double Helix, Vol 2 (2014)

Now, from (1.22), dim H* = 4. Also from Definition 1.4.11,
et

Aq(f) = span {Qj4 (L) 1ee E“} it (1.50)

i

Now

i - g(0) 3 9'(0) 4
J (@) 3T T

4

Il

ag + a1z + agmz + a3x3 + aqx

Q

for some ap,...,a4 € R

Therefore

—_—4

o/t (%) _ GOQ(U)Ig n (alg(o) " GUQI(O)) o4

Therefore, as g(0) < 0, whatever the value of g'(0) is we have:
A4(f) = {oz + pa* | 0, € R} (151)
Therefore
dim Ag(f) =2 (1.52)
Also, as c§”(£5) < 0, the 22 term in (1.48) is always present, so V4(F) and A4(f) only intersect at
isolated points, ie.:
dim (V*(F) N Au(f)) =0 (1.53)

Thus (1.20) is satisfied so V4(F) and A4(f) are indeed transverse subspaces of H%. Therefore F is

versal. O

Theorem 1.5.4 F is strongly equivalent to the unfolding:

(4) (3) (1)
Tos(z) = tBC[iQ((fB)IS i tB‘3024(§B)$4 4+ % 2(53)

2+ bx (1.54)

Proof
From Theorem 1.4.4, using the first case with k = 4 and ¢ = 5, provided M3 C As(f), F is strongly

equivalent to the unfolding:

) 8 3
Top(x) = 5% f(x) + a.ﬂaFa,O(a:) + bJQ%FO,b(a:) (1.55)
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Firstly, we need to show that M3 C A;(f). From Definition 1.4.11:

5

As(f) = span {Qj5 (%) Qe ES} nH®

As before,
5 (df 9(0) g'(0) 9"(0)
s(Wy _ 9U) 3 4 5
J(da:) g TP e
Q = a0+a1$+~--+a5$5
for some ag,...,a5 € R
Therefore
————5
o (df aog(0) 5 (alg(U) aog’(O)) 4 (azg(O) a19'(0) azg”(U)) 5
5 L = 7 —_—
Qj(d:c) 5 “t T Tt )t s T e )7
Therefore
As(f) = {cm:g + Bzt +yz° | o, B,y € R} (1.56)

But M3 = {az® | a € R}. Therefore M3 C As(f). Thus we may apply the first case of Theorem 1.4.4

to F. Lel us derive the terms on the right-hand-side of (1.55) in turn:
5 4
Pr=> Ff(")(O)
r=0 "~

x4 a8
= :l—‘—f(@ (0) + ﬁf(s)(ﬂ) as £(0),..., f®)(0) are all zero.

_g(0) 4, g'(0) 5
= Tttt
(3) (4)
teey () 4 tBCy (€B) 5
- 1.57
o1~ v T30 ° (1.57)
ad z [ ry
2 2
9 — d
J@aFa‘o J/O {fo h(z)dz} Yy
2
T
= Zh(0
5 1(0)
(1)
- @%lmz (1.58)
a
JQ%FO,,, = Jz
= (1.59)

Hence by adding j°f, (LJ2%F@() and bJQ%FO,b we obtain the result. O

Theorem 1.5.5 W, g(z) may be induced from Ty p(x).
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Proof
The first step is to show that ¢(x) = Ty o(x) is 4-determinate. We have already shown that f is strongly
4-determinate. As t is merely a truncation of f it follows that ¢ is also strongly 4-determinate. As ¢

is strongly 4-determinate, it is also 4-determinate.

Therefore, by Definition 1.4.4 with k& = 4, there exists a smooth reversible function y(z) such that ¢

can locally be expressed as

e = 28 E) (1.60)
It is straightforward to show that:
- e (¢p) !
=y(z) | 1+ (3)(5 )y(w) (1.61)
B

(where the real fourth root near to 1 is taken near to y = 0.)

Therefore we may construct a 2-unfolding U, ;(x) which may be induced from T, (z) in the straight-

forward way to give:

Ua,b (-7") = Ta,b(y(x))

(3) (1)
_ teey (€B) a4 <o (B)
= =00t + a2 2y(@) + by(a) (1.62)

Next, let us set

tpes’ (53) AL
21 =7 (1.63)

Again, taking the real positive fourth root, we obtain:

1

6 1
z =|l—m—] =z 1.64
il (tBC(()g) (fB)) e

Thus we introduce another induced unfolding V, ,(z), where:

Va,b(z) = Ua b(z(z))

_ iBG 24(53) (z)* y(2(2))* + b(y(2(z))

1 2 1
s _4 aco (§B) ( 6 >Z$ < 6 )Z
O y( tpel) (€p) Y\ oPe) ° o)

(where y operates on the expressions in the following brackets.)

+ %% SB) aco (fB)
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We may now apply Theorem 1.4.3 to finally reduce V() to the required form. Firstly, we set
L 4
U(l‘) = Vo,o(l‘) = ZIE (1.66)

Clearly, v is 4-determinate. Therefore, from Theorem 1.4.3, we may construct a universal unfolding

for v by choosing a suitable co-basis for Ag(v) in H.

Now, from Definition 1.4.11,

——a
d
A4(v) = span {Qj4 (%) |Q e E4} nH* (1.67)
But
dv 3
EE = X
4
Q = Zarxr for some ag,ai,...,as € R
=0
Therefore

(W ! 3 4
Qj o B apz” + a1T
72

So from Definition 1.4.15, a cobasis for A4(v) is {ac, ?} Therefore, applying Theorem 1.4.3 we

obtain the following universal unfolding for V, ;:

x4 x2
W () = T + a + Bz

This completes the proof. O
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