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New Quantitative Techniques

(Re)Visualizing Rater Agreement: 

Beyond Single-Parameter Measures 
David Eubanks, Furman University

Structured Abstract 

• Technique Identification: A new graphical technique is presented for

visualizing and assessing inter-rater agreement in discrete ordinal or

categorical data, such as rubric ratings.  To that aim, a chance-corrected

Kappa with two new features is derived. First, it is based on interpreting

ratings for each subject as vectors to visualize the data. This is done by

creating two-dimensional vectors from a subject-rating summary table,

sorting the vectors by their slopes, and plotting them in that order to create

a trajectory that displays all the data in context. Second, it presents a graph

and accompanying statistics (Kappa, p-value) for each pair of ratings in an

organized display so that all useful comparisons of the data are visually

displayed and statistically assessed. This information is presented on a

logical grid, usually called facets. Kappa is calculated in the usual way, by

referencing the actual results with an average of random rating

assignments. This average becomes a reference line on each graph as a

visual cue, as well. The statistical basis for the Kappa and significance

testing are derived, and the test assumptions are specified.

• Value Contribution: The most commonly used statistics for inter-rater

agreement, such as the Cohen Kappa or Inter-Class Correlation, give only

a single parameter estimate of reliability from which to make judgments

about ratings data. The technique presented here constructs graphs of all

the data that allow visual inspection of the ratings versus a reference curve

that represents chance-matching. The detailed reports on inter-rater

agreement can show how to fine-tune ratings systems, such as

understanding which parts of an ordinal scale are working best. This

solves a practical problem for researchers who rely on rating-type

classification by revealing which overall aspects of the rating system need
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to be improved and adds to the list of tools available for assessing rating 

reliability. In creating this approach to analysis of rater data, human 

usability is emphasized. Specifically, the use of geometry is designed to 

facilitate interpretability rather than being a mathematical derivation from 

first principles.  

 

• Technique Application: Two applications are given, both involving 

social meaning-making. The first uses data from wine-judging to illustrate 

how the method can illuminate expertise in that domain. The results 

reproduce published findings that were based on a classical statistical 

method. A second sample application uses data from a university 

assessment of student writing in which ratings on a developmental scale 

are assigned by course instructors to their students. The rating program is 

an example of social meaning-making that can be used to generate larger 

data sets than are typical for classroom-based assessment programs. The 

analysis shows the strengths and weaknesses of the rating system in terms 

of reliability and demonstrates how that knowledge leads to improvements 

in assessment. 

 

• Directions for Further Research: An argument is made for a public 

library of inter-rater data for empirical use by researchers. The social 

aspects of rating are discussed, and there is an illustration of the potential 

to derive new measures of inter-rater agreement from the meaning-making 

program that produces the data.  

 

Keywords: assessment, inter-rater agreement, measurement, reliability, writing 

analytics 

 

1.0 Technique Identification 

 

 Statistical measures in education, as elsewhere, are deterministic recipes 

for data summary and presentation that are predicated on explicit assumptions. 

Measures serve us well when they lead to insights that were hidden in the raw 

data. The main purpose of the method described in this section is to facilitate 

these insights by using intuitive graphs to represent rater data. Some readers may 

want to go directly to sections 2.0 and 3.0 to see examples and benefits first.  

 A new variation of existing inter-rater statistics is described below. It has 

two new features that make it easier to understand ratings data. The first is that the 
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raw data are turned into graphs so that we can more easily see patterns. The 

technique depends on turning the ratings on each subject into a vector with 

direction and distance. These are plotted one after another to create an arc that 

graphs all the ratings. Each of these arcs has a length that can be compared to 

complete rater agreement (arc length of one) and to the arc produced by 

hypothetical random raters. The proportion between randomness and perfect 

matching comprises the Kappa statistic.  

 Only basic knowledge of probability is needed to construct the new 

Kappa, specifically, the properties of binomial random variables: the formulas for 

their distributions, means, and variances, and the property of binomial 

distributions that for large enough sample sizes, they converge to the Normal 

distribution. 

 The R code to produce the graphs and statistics, as well as sample data, are 

available freely at Eubanks (2016a).  

 

1.1 Inter-rater Agreement 

 

The effective use of data to reach statistical conclusions depends on the 

quality of the measurements. In statistics, this quality is often determined by a 

true value plus error. A fundamental source of error is in classification—if the 

first observation of an object tells us it is a cat, but the second observation says 

that it is a dog, one of them (at least) is in error. The repeatability of measurement 

is referred to as the reliability of the measurement, and there are several existing 

statistical approaches to assessing reliability. Deciding which statistic is most 

appropriate depends on the type of data one has and the assumptions about it one 

is willing to make. See Haertel (2006) for an overview of reliability in educational 

measurement. 

The focus of this paper is the assessment of reliability for measurements 

that classify observations into discrete categories. The categories may be nominal, 

as when a doctor classifies symptoms as a cold or the flu, or they may be ordinal, 

as in poor-to-excellent ratings scales in educational rubrics used to rate student 

work. Student writing samples are often judged by multiple raters using an ordinal 

rubric scale in order to assess rater agreement. If raters show a lack of sufficient 

agreement, this indicates a problem in process, training, definitions, 

standardization of review samples, or some other aspect of the complex task of 

classifying observations.  

The method described below is forward-looking in the sense that it is most 

appropriate for large data sets with many raters and subjects. It takes advantage of 

the cheap computation and fast graphics of modern computers to produce intuitive 

graphs and multiple statistical summaries. These add interpretive value to the 
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inter-rater characteristics latent in the data. The example given in section 3.2 

complements the theory by employing a method for rapidly generating large 

amounts of data on student learning. The unifying motivation is that educational 

assessment is a social activity that involves human judgment and interaction at all 

levels. As such, meaning-making is not an induction of a statistical Platonic ideal 

but a group exercise that will always be subject to later revision. This follows the 

agenda in Moss (2004) to “(a) expand the range of assessment practices 

considered sound and, more importantly, (b) illuminate taken-for-granted theories 

and practices of psychometrics for critical review” (p. 245). 

We will consider cases where the number of scale outcomes is small (e.g., 

one to five on a typical Likert-type scale) and ratings are assigned on a sufficient 

quantity of subjects. In order to assess rater agreement, only cases with at least 

two raters are useful, but the raters need not be all the same, and the number of 

ratings per subject can vary. Rater agreement is compared to the frequency of 

agreement one would expect from random distribution of ratings. This “chance 

adjusted” agreement is intuitive: we would like to be able to detect if our raters 

are merely flipping coins to make judgments. In our case, random means that we 

choose random ratings for each subject in a way that preserves the overall original 

rating distribution (e.g., the fraction of 1s, fraction of 2s, and so on, present in the 

entire data set) and preserves the number of ratings per subject.  

As an example, suppose two raters are scoring student portfolios as pass or 

fail according to a common standard, and we want to assess the reliability of the 

scoring methodology. The chance-correction idea is that if the scorers cannot 

agree more often than coin flips, the methodology is very poor. Once we have the 

scores in hand, they will have some overall frequency of passes and fails (e.g. 

20% failing and 80% passing). Within the ratings, it is possible that the raters 

agree very often, but it is also possible that they agree infrequently on individual 

cases. It is possible that they never agree on the failing ratings in this case. The 

actual agreement rate, averaged over all cases, is compared to the random 

agreement we would expect from flipping a coin that is weighted to come up 20% 

tails (fail) and 80% heads (pass).  

There is a long history of such chance-corrected statistics, perhaps starting 

with Galton (Galton, 1892), as noted by Smeaton (1985). The most well-known 

measures of inter-rater agreement may be Cohen’s Kappa (Cohen, 1960) and a 

more general statistic by Fleiss (1971). There is considerable literature on the 

general topic, spanning statistics, education, psychology, medicine, and other 

fields. Readers are pointed to Agresti (2013) for the general topic of analysis of 

categorical data and to Gwet (2014) for a recent survey of inter-rater reliability 

measures. Fleiss (2003, p. 598-626) gives a statistical overview of the main 



 

David Eubanks 

                                                                                                                                                               

Journal of Writing Analytics Vol. 1 | 2017     280

     

 

methods (including the relationship between the Fleiss Kappa and the inter-class 

correlation coefficient) and references more variations. 

This paper develops a geometric approach to understanding rater 

agreement, using reports that are rich with data and relationships from which to 

make judgments. The goal is to provide practitioners a more useful way of 

analyzing inter-rater agreement as an exploratory tool. An example of the kind of 

question one might naturally want to ask about a set of ratings data is “do raters 

agree more about extreme cases (very good or very bad) than they do about 

intermediate ones?” This subsetting of the data is referred to as conditional rater 

agreement, a term from probability theory wherein the probability of event A is 

subject to the condition that event B has occurred (A given B) is Pr(𝐴|𝐵) ≔

 Pr (𝐴𝐵) Pr(𝐵) .⁄  In our case, the restriction B will be to consider only two rating 

responses at one time, e.g., the ones and twos. This is a way to ask, “Can the 

raters reliably tell the difference between a subject at level 1 and the same subject 

at level 2?” 

Others have formulated conditional rater agreement statistics. Fleiss 

(1971) gives a single-column statistic, and Roberts (2008) gives a formula for 

pairs of outcomes. In Gwet  (2014), one can find a chapter on the topic of 

conditional rater agreement. The approach here is different from those mentioned 

above, however. In chapter three of Gwet (2014), there is also a description of 

Kappa with the data conceived as vectors, but the vector lengths are not used. 

Only their squares are used as a calculation of rater agreement, like the Fleiss 

Kappa. 

  

1.2 Visualizing Random Ratings 

 

Cohen’s idea was that it is not good enough to simply assess how often 

two raters agree on a categorical outcome for a particular subject: we should take 

into account how often we might see the same agreement “by chance.” Exactly 

what that means has been the subject of debate (Powers, 2012), so we will first 

consider that question. In the following, we will proceed more along the lines of 

the Fleiss Kappa than the original Cohen Kappa. See Gwet (2014), chapter two, 

for a nice development of the Fleiss Kappa.  

Consider scores assigned by two lazy raters of student papers who simply 

flip coins and then assign a 1 for “good” or 2 for “poor,” depending on whether 

the coin is heads or tails. With two ratings for each paper (one per reviewer), each 

row of the summary table (representing a paper under review) must be populated 

with either (2 ,0), (1 ,1), or (0 ,2). A (2,0) entry, for example, means that both 

raters assigned a rating of “poor,” whereas a (1,1) entry means the raters 

disagreed, and (0,2) means both assigned “good” for a particular paper. With 
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random coin tosses, we would expect the (1 ,1) rows to occur twice as often as 

each of the other two types, according to the binomial distribution. Therefore, if 

we saw rows that look like Table 1, we might suspect that they were random. 

(Imagine this pattern aggregated over many rows in various orders of 

appearance.) 

 

 

 

 

 

 

 

 

 

 

 

 

A visualization of this random reference data is created by plotting each 

row as a two-dimensional vector on a plane. These are concatenated in the usual 

head-to-tail manner, as displayed in Figure 1. If there were three raters instead of 

two (each flipping coins to assign ratings), a representative table would be (0 

,3),(1 ,2) ,(1 ,2) ,(1 ,2) ,(2 ,1) ,(2 ,1) ,(2 ,1) ,(3 ,0), according to the binomial 

distribution.  
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Curves for increasing numbers of coin-flipping raters (n = 2, 4, 10, and 

100) are shown in Figure 2, where the vectors have been scaled so that the vertical 

and horizonal dimensions sum to one (.5 plus .5 in this case). That transformation 

is done by dividing the data table by the total number of ratings and then plotting 

the vectors as before. In Figure 2, the curves flatten as n increases, becoming 

closer to the straight diagonal (dotted) line, which is the asymptotic case (an 

infinite number of coin-flippers). The length of such a vector path will be taken as 

a statistical measure of rater agreement and called λ. In Figure 2, the path lengths 

decrease as the number of random ratings n increases. Conceptually, it is easier to 

be fooled by two coin-flipping raters (longer path, meaning a higher chance 

agreement rate) than by 100 coin-flipping raters (shorter path, meaning a lower 

chance agreement rate). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

By sorting the rows (which we can do since the order of cases carries no 

meaning for us), we can arrange them with steepest slopes first (from vertical to 

diagonal to horizontal), so that the vectors trace out a convex curve on or above 

the diagonal, as has been done with the ones in Figure 2. These curves have a very 

useful property. Although each of them shares the same proportion of each 

outcome, rater agreement increases with the length of the curve. Conceptually, a 
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straight diagonal line represents the worst possible agreement, with the two 

outcomes occurring at the same rate for every subject. As an example, imagine a 

set of good/poor ratings with two raters that looks like (1,1), (1,1) …. (1,1). In this 

case, the two raters disagreed in every case. The vectorization of (1,1) is a line 

that traces diagonally up to the right. They would combine to create a diagonal 

line like the one in Figure 2.  

By contrast, if the raters only produce (0,2) and (2,0) ratings (complete 

agreement on each case), the vectors are all either vertical or horizontal. The 

resulting curve makes an inverted ‘L’ by tracing a line straight up and then 

horizontally to the right and represents the maximum possible match rate as well 

as the longest curve (with length one).  

 

1.3 Calculating Geometric Agreement 

 

Some preliminary notation is convenient: S is the number of subjects 

being rated (or classified), k is the number of categories in the classification, and 

the number of raters who assigned outcome j to subject i is nij, which is shown as 

a table with subjects as rows and outcomes as columns. An asterisk is used to 

denote a marginal sum in that table. For example, n∗1 is the sum over all rows of 

column one. In calculating the vector length statistics, we will consider only two 

categories at a time, using only those subjects with at least two ratings within 

those categories and using N for the total number of eligible ratings in that set. 

For many practical applications it is not reasonable to insist on a constant 

number of raters per subject, and that restriction is not necessary. Nor will rater 

characteristics be taken into consideration (e.g., not all raters have to rate all 

subjects). 

Our understanding of what a random data set would look like is the basis 

for determining significant non-random matching. To do this, we follow Fleiss 

(1971) in finding the column frequencies in the table. Consider the ratings in 

column one and column two of the table: nij for 𝑗 ∈ {1,2}. Considering only these 

two columns, the fraction of ratings in column one is p1 := b∗1/( b∗1 + b∗2), and the 

column two fraction is p2 = 1 - p1. The null hypothesis (random raters) is that the 

ratings are just binomial assignments across the two categories with the given 

probabilities (p1, p2). Using the binomial distribution for the number of raters in 

each row bi∗, i = 1, …, R, we can construct a path like the ones in Figure 2 and 

calculate an expected length µλ0. Data that show more agreement than this 

expected random path is evidence for reliability of the measurements. By 

comparing the length λ to the mean random length µλ0 and using the standard 
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deviation of the random lengths σλ0, we can perform a hypothesis test and 

generate a p-value (assuming enough ratings to use the Normal approximation). 

Of course, most ratings scales have more than two outcome categories, 

which motivates the second idea. Instead of assessing the rating scale as a whole, 

we can study it in detail by computing conditional rater agreement between each 

pair of outcome categories. For example, with a three-point scale (e.g., poor, 

average, and good), there are three different comparisons: poor/average, 

average/good, and poor/good.  

This disaggregation into multiple reports allows an assessment of the 

reliability of ratings within the scale. It could be that raters agree well on 

poor/good ratings but not on average/good ratings, because the former is an easier 

judgment.  In fact, we should expect this pattern to be a characteristic of ordinal 

scales. 

Given a pair of outcome categories, we measure the path length λ that 

represents actual agreement rates and then compute Kappa following Cohen’s 

original (1960) formulation (recalling that µλ0 is the average path length for 

random ratings), 

 

The numerator is the difference between actual and average random path lengths, 

and the denominator is the difference between perfect matching (λ = 1) and the 

average random rate. The fraction therefore represents how much of the possible 

non-random agreement is actually demonstrated as a number between zero (actual 

ratings are the same as average random ones) and one (perfect actual rater 

agreement).  

The Kappa statistic is provided in combination with the graph of the 

vector path and statistical confidence (a p-value). Together these can inform 

practical decisions about the quality of agreement among raters. 

 

1.4 Random Arc Length Statistics 

 

The length of a vector arc for a pair of outcome categories (J1 and J2) is 

derived from those two columns of the ratings data table and given by a sum over 

the R rows that have at least two ratings in the J1 and J2 categories: 
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The sum ranges over each eligible row of the table, each of which gets turned into 

a vector length. The length is determined by the Pythagorean Theorem, which is 

the formula inside the sum. These lengths are averaged by dividing by the total 

number of ratings. This ensures that the maximum λ is 1. That maximum can only 

occur if all the subjects have perfect rater agreement, a fact that follows from 

convexity but is also easy to visualize from the graph. 

To clarify what is meant by “eligible rows,” when a pair of outcomes is 

chosen to compute the arc length λ, the rows of data for those two outcomes may 

contain instances of (0, 0), (0, 1), or (1, 0). This means that for the subject with 

ratings in that row, a maximum of one rating fell into the two rating types under 

consideration. Since there is not enough data in such rows to make a judgment 

about rater agreement, they are omitted, and N becomes the total number of 

ratings in the remaining R rows.  

The vector length λ of the usable R rows is compared to the mean length 

µλ0 obtained under the assumption of randomness. The null hypothesis assumes 

that the column proportions (the number of eligible ratings in the column divided 

by the total) are used in binomial sampling and that the number of samples is the 

number of ratings in a given row. For convenience, we will call these row counts 

ni.  The column proportions are calculated by adding up the column and dividing 

by the total, so that p := b∗J1/N  is the proportion for outcome J1, and 1 – p is the 

complementary proportion for J2. 

For each row i = 1, …, R the binomial distribution (representing our 

hypothetical random raters) can be used to find the average length of a binomial 

vector (x,y) where x+y = ni and the probability of x is p. Using the formula for the 

binomial distribution to find the probability of a ratings mix and then multiplying 

by the vector length of that set gives average row lengths 

 

These are summed and scaled by dividing by N to obtain the average arc length 

under the null hypothesis,  

 

The variance of the random arc lengths is calculated using the variance formula 

for the binomial distribution,  
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For large enough N, the central limit theorem allows us to approximate the 

distribution of random lengths by a Normal distribution. Using the mean and 

variance above, p-values can be generated in the usual way to test the hypothesis 

that the observed ratings have a mean greater than 𝜇𝜆0
 with a given confidence.  

Because the random variables that comprise the random baseline (null 

hypothesis) case are binomials, software can simulate data to compare to the 

calculated values. This was done as a check to the code that produced the 

diagrams. The histogram in Figure 3 shows 10,000 simulated values for a sample 

data set, and the solid line traces the Normal distribution with 𝜇𝜆0
and 

𝜎𝜆0
calculated using the formulas given above. The code and sample data to 

reproduce similar results are found in Eubanks (2016a).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.5 The Meaning of λ 

 

As discussed above, the maximum length of λ is one (the inverted L 

shape), corresponding to perfect rater matching. For statistical derivations of 

Cohen’s or Fleiss’ Kappa, see Fleiss et al. (1969). With the Fleiss Kappa, one can 

have a match rate of zero, whereas the minimum λ is the length of the diagonal 

√𝑝1
2 + 𝑝2

2, where (p1, p2) are the column proportions of the two outcomes under 

consideration. When squared, this quantity is the base match rate considered 

random for Fleiss. However, Fleiss compares this baseline probability to the 

actual combinatorial match rates within each row (ratings on a single subject) 
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using a sum over 
(

𝑛
2

)

(
𝑘
2

)
⁄  for n raters, k of whom assigned the same outcome. 

There are some undesirable small-n effects of this. With two raters, a row (1, 1) 

counts as zero matches, whereas four rater responses of (2, 2) have a match rate of 

(1 + 1) /6 = 1/3. If the column proportions are (.5, .5), both of these cases 

represent the worst possible match rate. For the λ length calculation, (1,1) rows 

accumulate outcome 1 and outcome 2 at the same rate, which are drawn along a 

diagonal from (0, 0) toward (.5, .5). Two rows of (1, 1) ratings would be counted 

the same as one case of (2, 2). Thus, the definition of λ distance is more self-

consistent than combinatorial matches. Rather than a worst case of zero matches, 

as with Fleiss, the λ distance has a worst case match rate when the accumulation 

of the outcomes exactly matches the column rates (p1, p2).  In Figure 2, as the 

number of raters increases, the binomial distribution approaches the worst case 

rate (the diagonal line), which creates more efficient Kappas the larger N 

becomes.  

Visually, the meaning of the λ statistic is intuitive as the length of a path, 

but we can relate it to match probabilities. For the sake of simplicity, assume there 

are a constant number of raters n per subject for each of the R subjects, so that the 

total number of ratings is N = nR. In this case, for each pair of outcomes we have 

 
 

which is comparable to the same thing without the radical: 

 

 
 

Here, MJ1J2 calculates the asymptotic match probability using the Fleiss 

formula as the number of raters increases to infinity. Using Jensen’s Inequality 

(Jensen, 1906), we see that 

 

so that the two measures are, in a certain sense, equivalent.  

 A direct comparison between the Fleiss and λ -based Kappas was made 

using a software simulation that created 100 sample data sets of 100 rows each, 

for probability distributions that ranged from (.50,.50) to (.99, .01) in increments 

of .01 (totaling about a million simulated subjects being rated). The proportion 
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comprising the left number of the pair was plotted against the difference in Kappa 

values. The differences between the two Kappas was small across the range of 

these proportions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The graph in Figure 4 shows that the λ-based Kappa in the simulation is within 

.03 greater than the Fleiss Kappa when the distribution is uniform (.5, .5), and less 

than .02 less near the distribution (.85, .15). The simulation was run multiple 

times, yielding the same results, and the code is available from the author. 

 Although the vector-path λs were chosen primarily for their graphical 

usefulness, there is a way to interpret them with respect to match rates. Consider a 

subject that has been already rated by several raters on a poor/average/good scale, 

and for concreteness, imagine that the proportions are (.20, .30, .50). If two new 

independent raters rate the subject, what is the probability that they will match? It 

is reasonable to assume that their ratings will approximate the same distribution 

(i.e., 20% chance of poor rating, etc.). If so, the chance of both new raters 

choosing “poor” is (.20)(.20) = .04 (the multiplication is justified by 

independence). The probability of matching on any of the three ratings is .04 + 

.09 + .25 = .38. This is a measure of how easy it is to reach agreement for that one 

subject, and a measure over all subjects could be found by averaging them. The 

vector length is obtained by taking the square root of the sum of squares to get 

√. 38 =  .62. This length can be interpreted by constructing a simpler probability 
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distribution over two outcomes (don’t match, match) = (.38, .62). Two 

independent selections taken from this distribution match if and only if both 

values are “match.” This has the same match rate as the original (.20, .30, .50) 

distribution, and this simplification to two outcomes can be accomplished no 

matter how many outcomes the original has. Intuitively, the simplification 

behaves like a logical AND operation on the original distribution and yields a 

parameter (.62 in this case) that can be visualized as a vector length but also 

represents a match probability. 

 

1.6 Assumptions 

 

 The derivations above that create λ and hence Kappa make certain 

assumptions that are used in justifying probabilistic calculations. They are as 

follows: 

1. As with the Fleiss Kappa, ratings are assumed to be independent. In 

practice, this is probably violated when a rater sits down to evaluate a 

stack of papers, because of the accumulating context. Also, different raters 

may have different rating styles, which also violates the independence 

assumption. This can be investigated empirically using item response 

theory if the raters are identified within the data set. 

2. As with the Fleiss Kappa, the proportions of ratings for a given subject are 

assumed to accurately represent the ease or difficulty of rating that subject, 

measured by the matching rate. This is more likely to be true when the 

number of raters per subject is large.  

3. As with the Fleiss Kappa, the null hypothesis assumes that all the raters 

are randomly assigning ratings according to the overall frequencies of 

ratings. This seems reasonable because it is actually possible. For 

example, raters could flip coins for pass/fail ratings, and this is a logical 

worst case for rater agreement. 

4. In calculating the total λ, the lengths of the row vectors (each 

corresponding to a set of ratings for a single subject) are weighted by the 

number ratings in them, hence giving more weight to cases that have more 

raters. This assumption could be changed to weight each subject (i.e., each 

row of the data) equally. Computationally, this makes a difference only if 

the number of raters per subject varies widely and there is a relationship 

between the number of raters per subject and the associated match rates.  

The caveats listed above are less likely to be problematic with larger data sets 

than with smaller ones.  
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2.0 Value Contribution 

 

 In educational measurement, “the concern of reliability is to quantify the 

precision of test scores and other measurements” (Haertel, 2006, p.65). General 

theories of reliability include applications from classical test theory (Haertel, 

2006, p.67) and generalizability theory (p.87), but as Haertel notes (p. 99), these 

methods are more appropriate for continuous rather than discrete types of 

measurements. The classification of observations into ordinal or nominal 

categories has its own body of literature on reliability, and Haertel refers readers 

to Agresti (2013). Another source on that subject is Fleiss, Levin, & Paik (2003). 

 

2.1 Categories of Reliability Measures 

 

Stemler (2004) undertook a categorization of inter-rater reliability 

measures as estimates of either consensus, consistency, or measurement. 

Consensus estimates measure exact matches among raters, such as when nominal 

categories are used, and Stemler locates the Kappa statistics here. Consistency 

estimates relax this stringency and measure the tendency for raters to rate in the 

same direction. For example, if rater A consistently rates one category higher than 

rater B for the same subjects, this is a sign of consistency but not consensus. The 

Pearson correlation coefficient and Spearman’s rank coefficient are given as 

examples of consistency measures. Stemler notes (p. 5) that these measures share 

with Kappa the problem of being “highly sensitive to the distribution of the 

observed data.”  

Stemler’s measurement estimates include principal components analysis, 

generalizability theory, and a Rasch facets approach (item response theory). A 

recent example of a measurement approach is found in Wang (2017), where 

“scoring tasks are regarded as a test-like activity for raters, and accuracy ratings 

are obtained to evaluate their scoring proficiency” (p. 37). The analysis employed 

a many-facets Rasch model. The paper demonstrates a thoughtful use of a 

complex analysis that produces detailed reports on individual raters. This method 

can be an advantage to understanding the operation of a rating process, but it 

comes at a cost. Rasch-type analyses are complex and can have assumptions that 

the Kappas do not have, for example, the assumption that a unidimensional 

construct is being rated (Lane & Stone, 2006, p. 417). Nevertheless, item-

response approaches like Rasch facets are useful for highly-detailed reporting on 

individual rater and subject statistics within a self-consistent mathematical model. 

We can make order from this menu of possibilities by placing the rater 

agreement question into the context of Moss’s (2004) argument for hermeneutics, 
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which Moss describes as “a holistic and integrative approach to interpretation of 

human phenomena that seeks to understand the whole in light of its parts, 

repeatedly testing interpretations against the available evidence until each of the 

parts can be accounted for in a coherent interpretation of the whole” (p. 245). As 

such, principal components analysis is useful as a high-level overview, and 

Rasch-type reports comprise dense details that are either interesting on their own 

or as a route to a holistic understanding. The pairwise facet graphs derived in the 

current work are somewhere in between, yielding a perspective with details that 

can be quickly used to identify patterns of interest. It is perhaps uniquely situated 

among the menu of options as an easy tool for exploratory analysis: the data 

requirements are minimal (ratings for anonymous subjects by anonymous raters), 

the algorithm is fast (e.g., a report on a half million ratings takes about a minute 

on a desktop computer), and the reports are easily understood. 

While Moss wrote about reliability in educational measurement generally, 

the argument is particularly applicable to using human raters to assess student 

writing: a social construction that impacts learners. If a review committee decides 

that a student’s portfolio is substandard and does not fulfill university 

requirements, this decision has consequences for the student. Similarly, 

conclusions about the quality of a writing program that lead to changes have 

consequences. Rather than beginning with an idealized “true score,” such as is 

assumed to exist in item response theory, it is possible to use social construction 

as a foundation for analysis. This relates to Messick’s (1986) proposal to consider 

the consequences of measurement as part of validity.  

As an example of this, consider the rules of thumb that have been passed 

down as to what constitutes good agreement.  Some statisticians pose arbitrarily-

created thresholds like .75 as a minimum Kappa to qualify as good agreement 

(Landis and Koch, 1977). In fact, what constitutes usual practice and what is good 

practice emerges from data and its use in research communities and cannot be 

determined a priori. How much rater agreement should Amazon.com expect in its 

product ratings before it accepts them as useful to its business model? How much 

rater agreement is enough to do aggregate analysis of a writing program? How 

much is enough to ethically use ratings to determine the status of individual 

students? When should someone ask for a second or third opinion on a medical 

diagnosis? These are statistical questions, but they are equally social ones. 

The geometric facets method, as with any statistical algorithm, is neutral 

with respect to its social implications. However, its design produces the best 

results with large data sets, making it a good tool to understand the relative 

strengths and weaknesses of an agreement-making social system emergent from 

ratings data. The vectorization of ratings is not motivated by a statistical problem. 
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It is done in order to create human-readable graphical interpretations of the 

relationships in ratings data. 

 

2.2 Limitations of Kappa 

 

Perhaps the most bothersome issue for users of existing Kappa or 

correlation coefficients is that a single measure of agreement is not very helpful. 

The reduction of a whole set of data into a single scalar value is a severe 

compression of the original data. As an analogy, it is more useful to have a graph 

of a random variable’s distribution than just the point estimate of the mean. In 

describing rater agreement statistics, Agresti (2013, p. 432-436) warns that  

Controversy surrounds the utility of kappa and weighted kappa, partly 

because their values depend strongly on the marginal distributions. The 

same diagnostic rating process can yield quite different values, depending 

on the proportions of cases of the various types […]. In summarizing a 

contingency table by a single number, the reduction in information can be 

severe. An alternative is to find kappa separately for each outcome 

category […] (p. 435) 

Traditional Kappa single-parameter measures of inter-rater agreement don’t just 

lack nuance, but as Agresti notes, they can be misleading. This is because the 

distribution of ratings (for example, ratings skewed to one side of the scale) can 

affect the Kappa statistic, making it difficult to compare results from one study to 

another. Stemler (2004) reached the same conclusion, as noted earlier. Agresti 

suggests a conditional approach: compute a Kappa for each category. The paired 

comparisons that are the subject of this paper take that idea one step further by 

computing a Kappa for each intersection of two categories. This partially 

addresses the other problem that Agresti mentions: the effect of the underlying 

distribution on the Kappa statistic.  

 The distribution problem is worth considering in more detail. A Kappa for 

ratings (or a correlation coefficient, for that matter) on a five-point scale with 

rating distribution (.10, .10, .10, .30, .40) is not directly comparable to data with 

the distribution (.20, .20, .20, .20, .20).  The advantage of comparing only two 

outcome types at a time is that the distribution only has one degree of freedom. 

This makes the problem more tractable, but does not remove it. For example, 

distribution of (.01, .99) is so heavily skewed toward the second type that most 

randomly assigned ratings will match by chance, creating an average random 

vector length µλ0 close to 1. This imbalance leaves little room to exceed the 

random rate and produce a meaningful Kappa. By contrast, a distribution of (.5, 

.5) is optimal, leaving the maximum possibility for actual ratings to demonstrate 
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their non-randomness. For more background on the subtleties of measuring 

reliability in the context of writing assessment, see Elliot, Plata, & Zelhart (1990, 

p 88).  

 As a rule of thumb, the more skewed the distribution, the more difficult it 

is to demonstrate a significant Kappa, both in effect size and p-value.  When 

comparing only two dimensions (rating or categorization types) at a time, we can 

at least aspire to agree on conventions and accumulate empirical exemplars as a 

guide. This is made simpler since two-dimensional comparisons can be compared 

symmetrically: a (.30,.70) distribution can be compared to a (.70, .30) distribution. 

The graphs of λ produced by the geometric method visually reveal when a 

distribution is skewed by the shape of the graph, so there is a built-in context 

when reading the statistics. An example is found in Figure 7, which is discussed 

in Section 3.3. 

 

2.3 Advantages and Disadvantages of λ 

 

For the practitioner, there are several advantages of the new method over 

existing Kappas. One is the visual presentation, which presents all the data in an 

organized manner for the reader (examples with explanations are found in the 

next section). One can literally see where agreement is and is not, due to the 

geometry. Second, the disaggregation of results into pairs of ratings creates all 

possible comparisons. This is somewhat possible with the conditional version of 

the Fleiss Kappa, but it seems to be little used in practice, and it has less 

resolution and is therefore harder to interpret. By contrast, the paired 

disaggregation makes it easy to see if an ordinal scale has rater agreement patterns 

that look ordinal (easier judgments should have higher rater agreement). Finally, 

the paired analyses reduces the distribution skew problem by isolating it to those 

pairs where data is sparse for one rating or another.  

 One disadvantage of the geometric method described in this paper is that it 

requires sufficient numbers of ratings to create the graph facets and statistics. The 

number of ratings needed depends on the scale used and the distribution of 

ratings. For example, with a pass/fail (two-point) scale that has evenly-distributed 

ratings, the method may be useful for as few as N = 20 ratings, but this would not 

be true for a five-point scale, where the lack of density in each of the conditional 

plots would likely be too small to be useful. A recent actual use of the method 

analyzed 23 student papers on a three-point rubric with three raters and a total of 

56 ratings. This yielded usable results, giving Kappa = .74 (p = .02) with N = 23 

when comparing the highest and lowest categories of the scale.  

 An additional consideration is that the path length λ and Kappa calculation 

make no use of rater identities, even when available. This makes the new method 
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most appropriate for large samples where we want to know about the 

characteristics of the rating system as a whole. In order to understand the behavior 

of individual raters, an item-response-type method would be more appropriate. 

 

3.0 Technique Application 

 

The preceding sections advocate inter-rater analysis as a way to 

understand social meaning-making, and the two examples in this section illustrate 

that principle. The first example will give an overview of interpreting the results, 

and the second example will be more detailed and focused on writing assessment. 

 

3.1 Judging Wine Quality 

 

 Can wine drinkers distinguish quality of wine in a blind taste test? In an 

article entitled “An Examination of Judge Reliability at a major U.S. Wine 

Competition,” Robert Hodgson (2008) gives an answer from four years of rating 

data. From the abstract: “Each panel of four expert judges received a flight of 30 

wines imbedded with triplicate samples poured from the same bottle. […] Judges 

tend to be more consistent in what they don’t like than what they do.”  

 The author of that study was kind enough to share a data set of wine 

ratings. This sample comprised R = 184 wines that had been rated each by four 

judges using a four-point ordinal scale similar to Olympics medals, which are 

encoded here as 1 = no medal, 2 = bronze, 3 = silver, and 4 = gold, in ascending 

order of perceived quality. For example, the first row of data is (3,3,3,3), meaning 

that all four judges rated the wine as silver medal quality, the next-to-best 

classification. 
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The graph facets and accompanying statistics in Figure 5 contain different 

perspectives on the wine ratings. A useful first scan of the graphs is to become 

aware of any skew present in the distributions. Notice the scales along the two 

axes—these are consistently applied for each graph for ease of comparison. The 

middle facet, which compares ratings of 2 (bronze) to 3 (silver) has a balanced 

distribution, with 2s and 3s each appearing about half the time. By contrast, the 1 

(no medal) versus 4 (gold) is skewed, with approximately a (.7, .3) distribution. 

Recall that such imbalance makes it more difficult to generate large and 

significant Kappas, an effect that is visible on the graph. The dark dots each 
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represent one subject case (a wine sample), and the thin gray line shows the 

average by-chance results that were calculated using the formulas given earlier. 

Notice how the dots and the line overlap substantially more on the top 

(horizontal) of the graph than on the bottom (vertical). Two random selections 

from a (.7, .3) distribution will match at rates of (.49, .09), compared to a balanced 

(.5, .5) distribution, which matches at (.25, .25). In this case, however, the 

divergence between random and actual results is large and significant despite the 

moderate imbalance. 

 Next, inspect the Kappas on the main diagonal. These are intuitively the 

most difficult distinctions to make (e.g., bronze versus silver, silver versus gold). 

The agreement in distinguishing a no medal wine and a bronze medal gives K = 

.28, whereas the other two Kappas on the main diagonal are .07 and .08, and 

neither has a small p-value. This reiterates Hodgson’s analysis of variance finding 

that judges agree more about what they don’t like than what they do like.  

 Finally, notice that the Kappas increase as we inspect the sub-diagonal and 

then the bottom left comparison. Intuitively, these represent easier judgments 

(e.g., bronze versus gold). The easiest judgment (no medal versus gold) has the 

best agreement, with K = .63 and p<.001.  

 The wine-tasting results are interpretable as social meaning-making. For 

example, they suggest that choosing a great wine is a matter of aesthetic taste, 

which individuals are entitled to define for themselves. The results also suggest 

that it is possible to buy a bottle of wine for dinner guests that they may uniformly 

dislike.  

 

3.2 Assessments of Undergraduate Writing 

 

There is great interest in reliably assessing the writing ability of students. 

A common method employs a rubric that describes aspects of writing such as 

knowledge of conventions or organization and sets different levels of achievement 

that are appropriate to learners. Raters use the rubric to assign ratings accordingly 

to student written works, and the ratings are then aggregated for various purposes. 

For example, one might be interested in detecting average change over time in the 

qualities of student writing as measured by the rubric ratings. The degree to which 

raters agree determines how usable the ratings are; if the level of agreement does 

not exceed random number generation (the baseline for the Kappa statistics), the 

ratings are probably unusable. In practice, it is easy to see how some ratings might 

have more agreement for some rating types than others, because some judgments 

are easier than others—as we saw with wine judging. The low ratings may find 

more agreement than high ratings, for example, if the former is more rules-based 

(e.g., grammar and spelling) and the latter is more aesthetic. Or it might be the 
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case that the ratings have more agreement on both ends because exceptional cases 

are easier to recognize, and the middle ratings have less agreement because they 

require finer judgments. These sorts of questions cannot be answered using 

single-parameter statistics like existing Kappas or correlation coefficients. 

The title of this paper is a nod to Brian Huot’s (2002) (Re) Articulating 

Writing Assessment, a small book with a high density of ideas. From these, I will 

cherry-pick one quote that I underlined in my copy of the book: “We need to 

begin thinking of writing evaluation not so much as the ability to judge accurately 

a piece of writing or a particular writer, but as the ability to describe the promise 

and limitations of a writer working within a particular rhetorical and linguistic 

context” (p. 107). Who better to make these descriptions than the teaching faculty 

who sweat over student writing assignments and get to know their students over 

weeks of feedback and interaction? This should be sufficient exposure for 

professionals to reach conclusions about the writing abilities (in the sense of 

promise and limitation) of their students. It turns out to be a simple procedure to 

ask for and collect that information. See Eubanks (2008) for the original 

description of this idea. 

Ratings of students as writers from a small (2,700 undergraduates) private 

liberal arts university were generated in this way, by surveying faculty at the end 

of each term to rate student writing ability. In contrast to the more usual method 

of rating individual pieces of writing, course instructors were asked if they had 

observed student writing during the 15-week term to a degree that would let them 

make a judgment and to use a common rubric to rate students as writers in the 

discipline. The scale used has five points, from Basic Skills (scored numerically as 

zero) to Ready to Graduate (a score of four), and the instructors were encouraged 

to place each student in a continuum between these to choose the best rating. 

Basic Skills in this case means that the student was judged as not yet producing 

college-level work, and Ready to Graduate represents the ideal skill level that a 

college graduate should have.  

The method described has some weaknesses as an assessment device. In 

particular, it is well known that writing skill in one discipline does not 

automatically transfer to another (cf, Yancey, Robertson, & Taczak, 2014; 

National Research Council, 2012).  So, in this case, we are assessing both in-

discipline and out-of-discipline writing as if they were the same thing, placing the 

focus on general writing skills that do overlap from one discipline to another. We 

should expect lower levels of rater agreement than if all the ratings came from the 

same type of writing. Similar considerations apply to rating heterogenous student 

portfolios.  

In defense of this general approach to assessment, liberal arts students are 

asked to write in various genres, and the expectations of some external 
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stakeholders include written communication in general terms. Moreover, if we 

want to understand longitudinal growth of writers, it will include multiple genres 

because undergraduates generally do not immediately specialize. They take a 

variety of general education requirements and may change majors.  

An advantage of the assessment method described is that it is easy to 

generate large data sets. In this case, the ratings gathered from four terms in the 

academic years 2015-16 and 2016-17 yielded data on 3,209 unique students and 

covered 93% of the undergraduate student body for each of the two academic 

years. The inter-rater calculation requires at least two ratings for a student in a 

given term to assess rater agreement within a term. This resulted in a usable data 

set with 1,765 students, totaling 3,916 ratings over the two academic years. For 

purposes of inter-rater agreement, student ratings in different terms were 

considered as different students, because student writing abilities are expected to 

increase over time (the data support this). Therefore, ratings taken within one 

academic term were considered a snapshot sufficient to assess rater agreement. 

Because of the disaggregated comparisons in the conditional rater agreement 

statistics, each rating may be used in more than one comparison, and the total 

number of comparable ratings within the report was 9,454. The graphs and 

statistics below summarize these comparisons. 

 

3.3 Reading the Conditional Agreement Graphs 

 

For simplicity, first consider a pair of rating outcomes. Perhaps the most 

important distinction in student writers is the difference between beginning 

college students and those about to graduate. After four years of instruction, can 

faculty members tell the difference? 
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The graph in Figure 6 was generated by first identifying those subjects 

with at least two ratings of a combination of one (the level of a beginning college 

student, one rating level above Basic Skills) or four (what we hope graduates 

achieve) within the data sample. The column frequencies are computed as (b*1/N, 

b*4/N), where N is the total number of ratings remaining in these two columns. 

The total number of ratings for a subject is used together with the column 

frequencies to compute the expected binomial vectors for the given distribution. 

These are sorted by slope, from vertical to horizontal, and combined to make the 

thin solid reference “chance” line that appears on the graph as a visual guide. 
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Above this reference line are dots that represent the vector addition of the actual 

data, again sorted by slope to trace out a convex shape. Dots are used so that the 

density of data is evident from the graph. Dots above the reference line comprise 

evidence of inter-rater agreement higher than random. The p-value gives the 

statistical significance of this, versus the null hypothesis that the ratings were 

randomly assigned from the overall distribution. That distribution can be read off 

the graph: the vertical axis, representing the four-ratings (see the key on the right 

side and top of the graph), accounts for more than 60% of the ratings in this 

subset, with the remaining ones being one-ratings. Random assignment of ratings 

to students from that (.60, .40) distribution results in the average curve traced out 

by the thin line. That is the baseline chance level of agreement for that facet. The 

further the dotted line is from the thin reference line, the higher Kappa will be, 

and the smaller the p-value will be. 

 The actual agreement in the ratings is represented by the arc of darker-

appearing dots along the left and top of the graph. Each dot is one student (or 

more precisely, one student-term). The space between dots (the vector length) 

represents the ratings for that student, as explained in Section 1. Horizontal 

segments and vertical segments represent complete rater agreement that the 

student is a one or four, respectively. Note that the number of these exact 

agreement cases far exceeds the number expected by chance. The diagonal 

segment of the dotted line represents cases where the ratings were mixed: students 

who received both one and four ratings. These are relatively rare.  

  The Kappa statistic, shown as .81 on the graph, is the fraction of the 

available “room” above the reference line that is accounted for by the data—a 

kind of effect size. In this case, the actual data is 81% of the way between the 

baseline chance line (Kappa = 0) and perfect agreement (Kappa = 1), which 

would appear as an inverted L, with only vertical and horizontal segments. The N 

= 780 given on the graph is the number of ratings.  

 The single graph in Figure 6 already shows the usefulness of being able to 

visually inspect rater agreement, but it is much more powerful when the whole 

scale is shown at once. To do this, we produce multiple graphs like the one in 

Figure 6, one graph facet for each possible pair of ratings. In this case the zero-

through-four scale has five responses, and therefore 4 + 3 + 2 + 1 = 10 facets, one 

for each pair of response types. The graph with all facets shown is presented in 

Figure 7. 
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The comparison of each of the rubric outcome categories with the others is 

obtained by consulting the row and column indexes in the facets display. Within 

each plot, as before, the dots represent individual student-terms being rated and 

trace out the observed path. As before, the thinner line is the expected curve for 

random assignments with the given distribution of scores, numbers of raters 

(which varies by student), and number of student-terms. The calculated p-value is 

given on each plot, where a low enough p-value (depending on what alpha level is 

chosen) rejects the hypothesis that the assigned scores are binomial random 

variables. The N is the total number of ratings (not subjects).  
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Notice that the ratings are very unbalanced in the leftmost column, which 

compares Basic Skills ratings to each of the others. This is because there are 

relatively few Basic Skills ratings to begin with. The top left facet, which 

compares zero to one rating scores, is usable, but the rest in that column should be 

viewed with suspicion when making judgments from the statistics. In this way, 

the facets can separate out distributional skew that becomes problematic in a 

single parameter measure of reliability.  

The diagonal of the facets contains outcomes that are adjacent. For 

example, the top left compares outcome 0 to outcome 1, and the bottom right is 3 

compared to 4. Because the ratings are ordinals, we would expect that there would 

be less agreement between raters on outcomes that are on this main diagonal, 

because these should be the most difficult decisions for a rater to make. Deciding 

between a 3 and 4 rating should require a finer assessment than deciding between 

a 2 and 4, and this is even more applicable for the 1 and 4 comparison in Figure 6.  

 A useful way to navigate the facet graphs is to look at the main diagonal, 

the top left (0,1) comparison down and right to the (3,4) comparison. These 

comprise the most difficult ratings on an ordinal scale for the reasons just 

mentioned. Recalling that a small p-value is a measure of statistical confidence 

that the ratings are not random, the top left facet, which compares zero to one 

ratings (Basic Skills to entry-level college writing) provides no evidence that the 

ratings match more than random assignment would. The other Kappas on the 

main diagonal range between .09 and .25 with small p-values, and one can see 

concomitant divergence of the darker line (the dots are too close together to see 

individuals) and the thin reference line. This first look shows that faculty raters 

agree more about which students are writing at the level of a college graduate than 

they do about entry-level writing.  

 Proceeding inward, inspect the first sub-diagonal. These are the (0,2), 

(1,3), and (2,4) comparisons, which should be easier judgments than the ones on 

the main diagonal. We should expect to see larger values for Kappa on the sub-

diagonal for that reason. And this is so, with Kappas of .18, .52, and .58, although 

the first of these is impugned by a high p-value. Moreover, the (0, 2) facet suffers 

from a very imbalanced data set: the fraction of zero ratings is only about 10%. 

As with any kind of statistics, fewer samples means less confidence. As 

educators, we are delighted that there are not more ratings of Basic Skills, but as 

researchers it is an annoyance.  

 The second sub-diagonal should have even higher Kappas, and this is true, 

even for the unbalanced (0,3) facet. The (1,4) facet is the one in Figure 6. 

Ignoring the leftmost zero column of the facets, the overall pattern is convincing 

evidence that the scale behaves like an ordinal scale should: the ends of the main 
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diagonal have higher agreement than the middle, and the Kappas increase as we 

move left and down.  

 

3.2 Implications and Use of Findings 

 

In the example just given, the analysis of writing ratings revealed a likely 

problem with the instructors’ definition of Basic Skills writers. This finding 

persisted over two years (the second year of data replicated the first year in this 

respect), and so the Writing Program director led an effort to see if this lack of 

discernment was experienced by instructors in the Freshman Writing Program. 

First-year undergraduates enroll in a required writing seminar taught by an 

instructor from the faculty at large, probably not someone trained in composition 

or rhetoric. In meetings with these faculty members, there was consensus that they 

did not, in fact, agree on minimal standards for undergraduate writing and that 

there was a need to do so. The variation in grades for these seminars reinforced 

that opinion; after adjusting for the high school grades and standardized test 

scores of students, the variance in writing seminar grades seemed unacceptably 

high. This lack of consistency represents a lost opportunity and an unfairness to 

first-year students. Consequently, the university has collected a range of first-year 

writing samples to use for classification, with the goal of faculty creating a 

university standard for entry-level writers. A first review of these has taken place 

and has revealed at least two interesting observations. The first is that minimum 

expectations are high and that papers are not littered with easily-identified 

mistakes like grammar and spelling. The most common comment was a desire to 

see a creative synthesis of the paper’s subject, and “not just a Wikipedia article.” 

The second observation is that the rater from the writing support center thought 

that the faculty’s minimum standard was too high.  

The work just described is just the first step in addressing the consistency 

issue, and there is much left to do. The point of discussing it here is that this issue 

would not have been noticed without the detailed inter-rater statistics provided by 

the Kappa facets.  

 

3.3 Validity 

 

Inter-rater agreement only tells us about the consistency of these data; it 

does not tell us that the ratings actually measure writing ability for the data 

presented in Section 3.2. It could be that instructors just assign higher ratings to 

more senior students. This is a question of validity, and some initial work has 

been done on that for the writing ratings described above. A sketch of current 

results is provided here for context.  
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Students who arrive at the university with higher (standardized) high 

school grades receive higher writing ratings on average. These increase over time 

with no evidence of a Matthew Effect (Stanovich, 1986). Support for convergent 

and divergent validity comes from the relationship of students’ scores on 

Advanced Placement (AP) tests taken in high school to the instructor ratings as 

many as five or six years later. Writing-intensive AP courses statistically lead to 

higher writing scores being assigned for each of six independent natural sample 

sets (three years of AP data times two years of writing assessments).  

Freshmen surveys ask students to rate their abilities relative to their peers 

in a number of areas, including writing, academics, leadership, physical health, 

and creativity. Of these, academic and writing self-efficacy are the most 

predictive of the faculty-assigned writing scores. However, academic self-efficacy 

is the more important of the two, and a factor analysis of the self-ratings show that 

students associate writing with creativity, which is not predictive of instructor-

assigned writing scores. This echoes Rezaei and Lovorn’s (2010) finding that 

“The results showed that raters were significantly influenced by mechanical 

characteristics of students’ writing rather than the content even when they used a 

rubric.” Interestingly, this quantitative finding contradicts what faculty reviewers 

said about minimum standards (at the end of Section 3.2), so there may be a lack 

of common agreement about what creativity is. 

This is not the end of the story, but a full validity analysis will not be 

possible until four years of ratings have been accumulated (e.g. to control for 

survivorship). At first look, however, it seems that this trust-the-teacher, crowd-

sourced method of collecting data is useful in assessing student writing in the 

aggregate. Beyond that, it seems to have salutatory effects on instructors, who can 

meaningfully contribute to the assessment process without a large investment of 

time. One professor in the sciences volunteered that she uses the rating scale as a 

pedagogical tool, asking students to reflect on their own development at the 

beginning and end of the course and then comparing it to her own assessments. 

Her conclusion was that her students were “too hard on themselves.” 

 

4.0 Future Directions 

 

Rater agreement is a key reliability measure for many types of data. In 

testing the mathematics and software used to generate the graphs, a variety of 

rating types were used. These include Amazon.com reviews of on-demand videos, 

book ratings, dating website ratings, bottled water quality ratings, airport 

cleanliness, and Olympic figure-skating scores. Educational data included several 

varieties of rubric ratings on different-sized scales, including portfolio scoring by 
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faculty reviewers, course grades, course evaluations, and student peer review 

scores.  

Given the volume of ratings data that is potentially available, we can 

imagine a database of de-identified rating data with descriptions and statistics. 

This would be a useful empirical library for consultation by researchers, and such 

a library would create new possibilities for larger-scale projects and meta-

analyses.  

Extending the idea that ratings are social constructs first and statistical 

data second may usefully contribute to the dialog that extends from Moss (2004) 

to Mislevy (2004) and beyond (itself a hermeneutics practice). An illustrative 

example will serve as a marker for a larger conversation.  

One of the 583,987 rows of Amazon.com test data contains ratings for the 

on-demand video South of Nowhere, Season 1, with 59 reviews. These range from 

one star (lowest) to five (highest) with a distribution of (.07, .05, .03, .14, .71) for 

that video. How we make sense of this depends on our purpose. If we want to do 

an analysis of on-demand video ratings in order to predict consumer behavior, we 

may want to average the ratings as scalars (4.4). In that case we might want to use 

standard deviation of ratings as a measure of self-consistency (reliability), since 

that is how confidence intervals are created. On the other hand, an interested 

consumer may glance at the ratings as a heuristic filter and then start reading 

comments for more information, e.g., “I was very pleased with my recent 

purchase of season one of south of nowhere on DVD. I had read some bad things 

about this set but I bought it anyway, I was a big fan of the show back then and I 

just wanted to be able to watch it again. – hearttofalion26.” This browsing may be 

targeted at understanding possible deficiencies to minimize the risk of 

disappointment. That question operates on two levels—1) can I glean useful 

information in this instance, and 2) is this is a reliable method for choosing 

products in general? (For the whole data set, the largest Kappa among the ten 

facets was K = .27, comparing one-star and four-star ratings. Generally, rater 

agreement is low.) 

Suppose we assume that there is a true rating of the video and further 

assume that the probability of a rating type (one to five stars) being the true value 

is given by the distribution. Then there is a 71% chance that South of Nowhere, 

Season 1 is a five-star video, and a 7% chance that it is a one-star video in reality. 

Under this assumption the estimation of the number of correct classifications in 

the data set is identical to a match rate calculation. Looking at this the other way 

around, if we like the idea of counting rater matches as a reliability measure, then 

by implication we can embrace this epistemology about true scores—the statistics 

stay the same.  
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Or we might prefer democracy, where the rating category with the 

maximum number of ratings is the true assessment. For example, imagine a 

portfolio pass/fail review with three raters. This is guaranteed to produce the true 

score, because there will always be a majority.  If we use a three-point scale 

instead, we would sometimes require a fourth rating to reach a majority. The rule 

for classifying cases has implications for how we calculate reliability, since any 

vote that is not a majority vote is wrong regardless of its other properties. With 

the practices defined, it is possible to construct a custom version of rater 

agreement that reflects this program. A chance-corrected Kappa in this case 

would compare the actual number of majority votes to a suitable random 

benchmark. Note that majority votes is different from number of matches, and this 

would lead to a new Kappa.  

These examples are intended to illustrate the idea that statistical reliability 

can emerge organically from the purpose of the project, which may involve 

tradition, social consequence, bureaucratic feasibility, local politics, pedagogy, 

research findings, and so on. Describing these derivations and their empirical 

consequences would ensure a fascinating scholarly conversation with potential 

benefits to students. It would also clarify when cases are comparable and work 

toward a shared theoretical and empirical understanding of rater agreement as an 

integral part of classification. More thoughts on the subject are found in Eubanks 

(2016b), including a discussion about having too much reliability. 

Other future work could include developing variations of graphical 

displays of ratings data. One experimental variation that rescales unbalanced data 

is available in the code provided in Eubanks (2016a). Another question concerns 

the shape of the graph in Figure 4. Its regularity suggests a simple relationship 

between the geometric and Fleiss Kappas that can be derived mathematically. 

 

5.0 Resources 

 

Code to produce the reports found in this paper, as well as sample data 

sets, can be found at Eubanks (2016a). The particular code and data used to make 

the figures is also available from the author via personal communication at 

david.eubanks@furman.edu.  
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